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Abstract

This note studies the bias arises from the MLE estimate of the rate parameter and
the mean parameter of an exponential distribution.

1 Motivation

Although maximum likelihood estimation (MLE) methods provide estimates that are useful, the
estimates themselves are not guaranteed to be unbiased. Nevertheless, MLE methods are still highly
regarded in practice due to several of their properties, notably, the estimates are consistent and
asymptotically normal (Casella and Berger, |2002; |[Panchenkol 2006).

The most popular example that illustrates the bias of the MLE methods is the MLE estimate of the
variance parameter o2 of a normal distribution N(p, 02), we refer the readers to [Liang| (2012)) for
details. Another example that is of interest is that of an exponential distribution. In this case, the
MLE estimate of the rate parameter A of an exponential distribution Exp(\) is biased, however,
the MLE estimate for the mean parameter ; = 1/ is unbiased. Thus, the exponential distribution
makes a good case study for understanding the MLE bias.

In this note, we attempt to quantify the bias of the MLE estimates empirically through simulations.
For this purpose, we will use the exponential distribution as example.

2 MLE for Exponential Distribution

In this section, we provide a brief derivation of the MLE estimate of the rate parameter A and
the mean parameter y of an exponential distribution. We note that MLE estimates are values that
maximise the likelihood (probability density function) or loglikelihood of the observed data.

Let {x;} be i.i.d. random variables that are exponentially distributed, written as

x; ~ Exp(\). (1)

The likelihood function associated with X = {z;} can be written as

N
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with the following log likelihood:
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Solving for the MLE estimate A = arg min, L()\, X) gives us
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where Z is the mean of {z; }:
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We note that by using the invariant property of the MLE, the MLE estimate /i is simply
z. (6)
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2.1 Bias of the MLE Estimates

An estimate is unbiased if the expectation of the estimate equals to its true value.

We first note that the MLE estimate /i is unbiased, evidenced by
1
Ei] = Ela] = & > Eloi] = u- ™
i=1

For the MLE estimate )\, its expectation is

=A. (8)

The inequality follows from Jensen’s inequality with the convex function f(z) = 1/x.

To quantify the bias of A, we can derive the bias B (;\) directly using the properties of gamma dis-
tribution. First, we note that the exponential distribution is a special case of the gamma distribution
with shape parameter 1, that is,

x; ~ Gamma(1, A) . )
Since the summation of gamma random variables is also gamma distributed (see Proposition 3.1,

Taylor, [2009), we have

N
Z x; ~ Gamma(N, \) . (10)
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Notice that the inverse of a gamma random variable is inverse-gamma distributed (Wikipedia, 2016):

1
—x—— ~ InvGamma(N, \), (11)
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with expectation
1 A
E = for N > 1. 12
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With this established, we can derive the bias of the MLE estimate \ as follows:
N 1 N N A 1
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T SN N -1 N-1

We can see that the bias approaches zero as IV increases.



3 Empirical Bias for Exponential Distribution

In this section, we perform experiments to evaluate the bias of the MLE estimates empirically
through Monte Carlo method. The empirically bias of an estimate A can be computed as
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where A(@) is the MLE estimate for X in the 7-th simulation experiment. To be precise,
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noting that ;" is the i-th sample of the j-th simulation experiment.

In the following, we compute B(;\) by varying N from 1 to 10000 and setting M = 10000. For
simplicity, we let A = p = 1. The experiments are performed using Matlab. Figure below plots the
mean of the MLE estimates A against the number of samples N used in the experiments. The mean
\is computed as follows:

= 1 M ~
A=—>"AD, (16)

with varying N. From the following plot, we can see that the mean of the MLE estimates deviate
from its true value. However, the deviation decreases as the number of samples N increases.
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Next, we plot the empirical bias of the MLE estimator \ (blue) and its theoretical counterpart (red)
vs the number of samples in the figure below. Here, we can see that the empirical bias fluctuates
around its theoretical values. Further, we also superimpose the empirical bias of the MLE estimate
[t (green) for illustrative purpose. Since the MLE estimator for p is unbiased, the empirical bias
fluctuates around 0 (yellow).
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We note that the fluctuations come from two independent sources. Firstly, the fluctuation is due to

variability within the MLE estimates, that is, V[\] # 0. The second source of variability comes
from the Monte Carlo simulations, which approaches zero only when M — oo. To illustrate, in the

figure below, we compare the standard errors of B (;\) against their theoretical values, given as

212
V[}]zv[l} =V Zjév = NZA for N > 2. (17)
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This corresponds to the first source of variability. The variability from the Monte Carlo simulation
is in fact smaller, which is given by
1« N2 )2

V[B@]:*VW:M(Nfl)z(Nﬂ)v for N > 2. (18)
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We note that the standard errors computed for the estimator /i have similar values as those of A (thus
not plotted). This is because their variances are very close to one another (due to A = p) for large

N:
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3.1 Bias Correction

To recap, the expected value of the MLE estimator \is % A. We can simply multiply a correction
factor % to the MLE estimator to eliminate the bias, this gives us an unbiased estimator

o N-1 N-1
Nz _ZN

i=1%i

(20)

In the following graph, we compute the empirical bias of the adjusted estimator.
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As expected, the MLE estimates centred around 0, verifying that the estimator \* is unbiased. We

note that the variance of the estimator is

N-1)2_ A2

W=D sy = ,
N2 (N —2)

VA = for N > 2, 1)

which is slightly lower than that of the MLE estimator ), this corrected estimator is thus better in
terms of both bias and variability.
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