
A Stable Implementation of the Adaptive
Rejection Sampler in MATLAB

Kar Wai Lim∗
National University of Singapore
karwai.lim@nus.edu.sg

November 28, 2018

Abstract

We provide a tutorial on the derivative-based adaptive rejection sampler with an
illustrative example and present a stable implementation of the sampler in MAT-
LAB. The stable implementation avoids the issue of numerical instability that may
appear in a naı̈ve implementation of ARS. To validate our implementation, we
perform one-sample Kolmogorov-Smirnov test for samples generated from nor-
mal distribution and gamma distribution. We find that our code produces accurate
samples whereby several existing implementations fail.

1 Adaptive Rejection Sampling

Adaptive rejection sampling (ARS) [Gilks and Wild, 1992] is a form of rejection sampling where we
propose a sample from a simpler distribution (called the envelope distribution) and then accept/reject
the sample. The ARS uses an efficient envelope distribution and allows the envelope distribution to
adapt and become better over time. Refer to Gilks and Wild [1992] for details.

We study the derivative-based ARS in this report, which requires the derivative of the log likeli-
hood of the target distribution to be evaluated. However, we like to note that an alternative called
the derivative free ARS exists, which may or may not be more efficient (depends on the cost of
computing the derivative).

The aim of the ARS is to generate samples from a distribution where its likelihood (or probability
density function) is continuous and log-concave. Notable examples include the normal distribution
(Gaussian distribution) and exponential distribution.

2 Derivative-based ARS

Derivative-based ARS makes use of the derivative of the log likelihood in determining the envelope
distribution. It requires the following assumptions to be met (adapted from Kohnen1):

1. The likelihood up to a proportionality constant, denoted g(x), is continuous and differen-
tiable everywhere in its domain x ∈ D.

2. The likelihood g(x) is log-concave, or equivalently, its log, h(x) = log g(x), is concave
everywhere inD. This means that the second derivative h′′(x) is negative everywhere inD.

∗ This work is undertaken while the author was in the Australian National University and CSIRO’s Data61.
1 http://stat.duke.edu/˜cnk/Links/slides.pdf

1

http://stat.duke.edu/~cnk/Links/slides.pdf

Efficiency of ARS:

1. ARS tends to position the evaluations of h(x) and h′(x) optimally, because new evaluations
are most likely to occur at values of xwhere the rejection envelope and squeezing functions
are most discrepant.

2. Using two starting points were found to be sufficient for computational efficiency.
3. Empirically, the number of evaluations of h(x) and h′(x) required to sample n points from

the target distribution f(x) (normalised pdf of g(x)) increases approximately in proportion
to n

1
3 , even for very non-normal densities.

2.1 Demonstration of ARS

Here, we detail the sampling algorithm for ARS. We assume that the following are given: (1) g(x)
the likelihood (up to a proportionality constant) that we wish to sample from, (2) log likelihood
h(x) = log g(x), and (3) derivative of the log likelihood h′(x) = d

dxh(x). We note that g(x) needs
to satisfy log-concavity for all x, that is, h′′(x) < 0 for all x.

Initialisation. The sampling algorithm starts by choosing two points x1 and x2 such that h′(x1) >
0 and h′(x2) < 0, that is, x1 is located to the left of the mode and x2 is located on the right. We then
compute their gradients h′(x) and connect their tangent lines, which form the envelope function.
The point of intersection is given by

z1 =
h(x2)− h(x1)− x2h′(x2) + x1h

′(x1)

h′(x1)− h′(x2)

The corresponding piecewise upper hull function u(x) (for the log likelihood) is thus

u(x) =

{
h(x1) + (x− x1)h′(x1) for z0 < x < z1
h(x2) + (x− x2)h′(x2) for z1 ≤ x < z2

where z0 = −∞ and z2 = ∞ corresponds to the boundary of the support of the distribution of
interest. The corresponding envelope function is thus expu(x). The upper hull function and the
envelope function are represented by the red lines in the plots below. We note that the upper hull
function must always be greater or equal to the log likelihood, such that the following condition
u(x) ≥ h(x) is satisfied.

Next, we define the squeezing function as exp l(x), where l(x) is the piecewise lower hull for h(x).
Note that the condition l(x) ≤ h(x) needs to be satisfied. The lower hull is formed by joining the
two initial points x1 and x2 by a straight line. For the support x that are not within [x1, x2], we
simply define l(x) = −∞. The lower hull function is given by

l(x) =


−∞ for x < x1

(x2 − x)h(x1) + (x− x1)h(x2)

x2 − x1
for x1 ≤ x < x2

−∞ for x2 ≤ x

We note that the lower hull l(x) and the squeezing function exp l(x) are represented by the green
lines in the plots below.

Example. We illustrate the above with a standard normal distribution Normal(µ = 0, σ2 = 1). The
likelihood (up to a proportionality constant), log likelihood and its derivative are:

g(x) = exp

(
− 1

2

(x− µ)2

σ2

)
h(x) = −1

2

(x− µ)2

σ2

h′(x) = −x− µ
σ2

Note that h′′(x) = −1/σ2 < 0 for all x, which confirms that the likelihood function is log-concave.

2

We choose starting point x1 = −1 and x2 = 2, with

h(x1) = −0.5 h(x2) = −2

h′(x1) = 1 h′(x2) = −2

and we work out the upper hull function as

u(x) =

{
x+ 0.5 for −∞ < x < 0.5

−2x+ 2 for 0.5 ≤ x <∞

Note that the intersection of the two tangents located at (0.5, 1). Similarly, we can work out the
lower hull function, as follows:

l(x) =


−∞ for x < −1

−0.5x− 1 for − 1 ≤ x < 2

−∞ for 2 ≤ x

Below, we illustrate the upper hull u(x) (red line) and the lower hull l(x) (green line) superimposed
on the log likelihood plot of h(x) (blue line). We note that both the upper hull and the lower hull are
piecewise linear functions.

−5 0 5
−14

−12

−10

−8

−6

−4

−2

0

2

x

lo
g
 l
ik

e
lih

o
o
d

Taking exponential, we get the corresponding likelihood plot g(x) (blue line), with the envelope
function expu(x) (red line) and the squeezing function exp l(x) (green line). The envelope function
and the squeezing function are piecewise exponential functions. We note that the envelope function
and the squeezing function gets better as we perform more evaluation of the log likelihood.

3

−5 0 5
0

0.5

1

1.5

2

2.5

3

x

li
k
e
li
h
o
o
d

Propose a sample. We now move on to the generation of samples through the acceptance/rejec-
tion sampling method using the piecewise exponential envelope function. The probability density
function used for proposing a sample can be obtained by normalising the envelope function (so that
the area under the curve is one):

s(x) =
expu(x)∫∞

−∞ expu(y) dy

The normalising constant, denoted as Q, (assuming h′(xi) 6= 0) can be evaluated as∫ ∞
−∞

expu(y) dy =

∫ z1

−∞
exp

(
h(x1) + (y − x1)h′(x1)

)
dy +

∫ ∞
z1

exp
(
h(x2) + (y − x2)h′(x2)

)
dy

=

[
1

h′(x1)
exp

(
h(x1) + (y − x1)h′(x1)

)]z1
−∞

+

[
1

h′(x2)
exp

(
h(x2) + (y − x2)h′(x2)

)]∞
z1

=
1

h′(x1)

(
expu(z1)− lim

x→−∞
expu(x)

)
+

1

h′(x2)

(
lim
x→∞

expu(x)− expu(z1)
)

=

(
1

h′(x1)
− 1

h′(x2)

)
expu(z1)

Noting that for the normal likelihood the upper hull function u(x), its limit toward∞ and −∞ is

lim
x→−∞

u(x) = −∞

lim
x→∞

u(x) = −∞

Thus, the limits for the envelope function become

lim
x→−∞

expu(x) = 0

lim
x→∞

expu(x) = 0

After computing the normalising constant, Q =
∫∞
−∞ expu(x) dx, we can compute the cumulative

density function (cdf):

c(x) =
1

Q

∫ x

−∞
expu(y) dy

4

which will be used for sampling (via the inverse cdf method). Note that the cdf is a piecewise
exponential function:

c(x) =


1

Q

1

h′(x1)
expu(x) for z0 < x < z1

1

Q

[
1

h′(x1)
expu(z1) +

1

h′(x2)

(
expu(x)− expu(z1)

)]
for z1 ≤ x < z2

To generate a sample x from the cdf c(x), we sample a random standard uniform variable w1 and
find x such that c(x) = w1. That is,

x∗ = c−1(w1)

is a sample from the cdf. For instance, if w1 falls in the first piece of the cdf, then

x∗ = x1 +
log
(
Qw1h

′(x1)
)
− h(x1)

h′(x1)

Otherwise if w1 falls into the second piece then

x∗ = x2 +
log
(
e2
)
− h(x2)

h′(x2)

where

e2 = h′(x2)

[
Qw1 −

1

h′(x1)
expu(z1)

]
+ expu(z1)

Example. To illustrate using the above curated example, the normalising constant can be computed
to be Q = 4.0774. The cdf can then be derived as

c(x) =


1

Q
exp

(
x+ 0.5

)
for −∞ < x < 0.5

1

Q

[
e+−0.5

(
exp

(
− 2x+ 2

)
− e
)]

for 0.5 ≤ x <∞

The cdf is presented as the red line in the plot below. The piecewise boundary is separated by the
dotted blue line.

Now, to simulate a sample from the cdf, we draw a random variable from the standard uniform
distribution. As an example, say we sample w1 = 0.8389. From the cdf plot, we can see that this
value (on y-axis) corresponds to the second piece of the cdf, which gives

x∗ = 0.8635

This is shown by the green dotted line below.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

c
u
m

u
la

ti
v
e
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

5

Accept/reject the sample. After sampling x∗, we perform an acceptance/rejection test to see if
the sample x∗ is to be rejected. We note that the existence of the squeezing function is to improve
the efficiency for the rejection test, especially if the log likelihood h(x) requires high computational
cost. To illustrate, the acceptance probability for accepting the sample x∗ is given by

A(x∗) =
exph(x∗)

expu(x∗)
= exp

(
h(x∗)− u(x∗)

)
and we accept the sample x∗ if a generated standard uniform variable w2 is less than the acceptance
probability:

w2 < A(x∗)

Since the squeezing function exp l(x) is always smaller than exph(x), we can first create a squeez-
ing test (quick to evaluate)

w2 < B(x∗) =
exp l(x∗)

expu(x∗)
= exp

(
l(x∗)− u(x∗)

)
to test for acceptance before proceeding to the acceptance/rejection test which requires the compu-
tation of the log likelihood h(x).

Example. Continuing with our example, we first sample w2 = 0.4789 from a standard uniform
distribution and perform the squeezing test. The squeezing ratio for the sampled x∗ = 0.8635 is
B(x∗) = 0.1818, since w2 is greater than the squeezing ratio, we fail the squeezing test and proceed
with the acceptance/rejection test.

To perform the acceptance/rejection test, we compute h(x∗) = −0.3728 (note that this value will
be used later, so will be stored) and compute the acceptance probability A(x∗) = 0.5242. Since
w2 < A(x∗), we accept the sample x∗ as generated from the likelihood g(x).

Code. The code to perform the above ARS demonstration, including the plotting of the relevant
diagrams, is presented in Code Appendix A.

Update the Envelope and Squeezing Function. Now, since we have evaluated the log likelihood
h(x∗), we can use this information to improve the envelope function and the squeezing function.

The updated plots are displayed below. As expected, the upper hull function (red) and the lower hull
function (green) are now closer to the log likelihood function (blue). Note that we now have three
points in the plot.

−5 0 5
−14

−12

−10

−8

−6

−4

−2

0

2

x

lo
g
 l
ik

e
lih

o
o
d

The likelihood function is plotted using the same scale as the above likelihood plot (when we use
two starting points). We can see that the introduction of one extra point drastically improves the

6

envelope function (red) and the squeezing function (green). Note, since points are introduced when-
ever we evaluate the log likelihood (and its derivative), and that is when the proposed sample fails
the squeezing test, the introduction of new point will tend to be where the discrepancy between the
upper hull and lower hull is high. This gives rise to an efficient update. “The method tends to space
evaluations of h(x) and h′(x) optimally” [Gilks and Wild, 1992].

−5 0 5
0

0.5

1

1.5

2

2.5

3

x

li
k
e
li
h
o
o
d

The updated cdf has thus become a three pieces piecewise exponential functions, as illustrated below.
We note that the cdf converges to the true distribution when the number of points tend to infinity.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

c
u
m

u
la

ti
v
e
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

Code. The code to produce the updated envelope function and squeezing function is in presented
Code Appendix B.

3 Algorithm for ARS

We implemented two versions of the ARS algorithm in MATLAB. The first one utilises efficient
methods to update the various statistics used in the algorithm, giving a very fast sampler. However,
this algorithm may encounter numerical overflow (numbers too large to be stored in the computer
and treated as∞ instead) or underflow (numbers are too small that the precision of the computer is

7

not sufficient, thus treated as zero) if the log derivatives are high in magnitude and the initial points
are chosen appropriately.

The second implementation addresses the numerical instability, however, at the cost of sacrificing
some efficiency, thus slower. Fortunately, this implementation is very robust and is thus more suit-
able to be used in Gibbs sampling for which the posterior distributions can vary every iteration and
can be unstable. We note that both versions produce the same samples given the same random seed.

3.1 Efficient Sampler

We first describe the efficient sampler, which is a relatively straight forward implementation of the
ARS. The inputs to the algorithm are

1. Required number of samples N .
2. A concave log likelihood function h(x).
3. Derivative of the log likelihood function h′(x).
4. Left and right boundary of the support for x, denoted as x− and x+.
5. Initial points for constructing the upper and lower hull, denoted as x1, . . . , xM .

Several conditions to ensure the functionality of the algorithm are as follows:

1. The log likelihood h(x) is concave, that is, h′′(x) < 0 for all x.
2. At least 2 initial points are given, that is, M ≥ 2.
3. The initial points are within bounds, that is, x− < xm < x+ for m = 1, . . . ,M .
4. The initial points are not repeated, that is, xi 6= xj for i = 1, . . . ,M ; j = 1, . . . ,M ; and
i 6= j.

5. The left most initial point has positive derivative and the right most initial point has negative
derivative, that is, h′(x1) > 0 and h′(xM) < 0.

6. The initial points have non-zero derivative, that is, h′(xm) 6= 0 for m = 1, . . . ,M .

Now we describe the algorithm in details below.

Initialisation Step. We initialise a vector of x as follows

x = [x0, . . . ,xM+1] := [x−, sort(x1, . . . , xM), x+]

and then renaming the points to x0, x1, . . . , xM , xM+1 . Note that this means x0 = x−, xM+1 =
x+, and xi are in ascending order. In addition, we also evaluate the log likelihood and the associated
derivative of the log likelihood of each point in x. These values are stored (cached) as h and v
respectively.

h = [h0, . . . ,hM+1] := [h(x0), h(x1), . . . , h(xM), h(xM+1)]

v = [v0, . . . ,vM+1] := [h′(x0), h′(x1), . . . , h′(xM), h′(xM+1)]

Note that for x1, . . . , xM , we can compute the tangents of the log likelihood function h(x). These
tangents are linear equations of the form

tangenti(x) = h(xi) + (x− xi)h′(xi)

Next, we construct a vector of z, for which each value corresponds to the intersection point of
the tangents for each point in x. These intersections are obtained by solving tangenti(x) =
tangenti+1(x). Mathematically,

z = [z0, . . . , zM] := [z0, . . . , zM]

where z0 = x0 = x− and zM = xM+1 = x+ and the zi (for i = 1, . . . ,M − 1) satisfies

zi =
h(xi+1)− h(xi)− xi+1h

′(xi+1) + xih
′(xi)

h′(xi)− h′(xi+1)

=
hi+1 − hi − xi+1vi+1 + xivi

vi − vi+1
(1)

8

Note that z has one less element compared to x, that is, length(z) = length(x)− 1.

We then construct the upper hull function u(x), which is a piecewise linear function of the tangents
that ‘envelope’ the log likelihood function. This piecewise function can be seen as the minimum of
all tangent lines:

u(x) = min
i=1,...,M

tangenti(x)

=

M∑
i=1

tangenti(x) I(zi−1 ≤ x < zi)

=

M∑
i=1

[
h(xi) + (x− xi)h′(xi)

]
I(zi−1 < x ≤ zi) (2)

Note that u(x) ≥ h(x) for all x.

For computational efficiency, we store the value of u(x) evaluated at each point in z:

u = [u0, . . . ,uM] := [u(z0), . . . , u(zM)] .

In addition, we also cache their exponents

eu = [eu0 , . . . , e
u
M] :=

[
eu(z0), . . . , eu(zM)

]
.

The lower hull function l(x) is given by straight lines connecting each consecutive points
x1, . . . , xM . For instance, the linear equation connecting xi−1 and xi (for i = 2, . . . ,M) can
be derived as

li(x) = h(xi−1) + (x− xi−1)
h(xi)− h(xi−1)

xi − xi−1

=
xi h(xi−1) + xi−1 h(xi−1) + xh(xi)− xi−1 h(xi)− xh(xi−1) + xi h(xi−1)

xi − xi−1

=
(xi − x)h(xi−1) + (x− xi−1)h(xi)

xi − xi−1

For the region to the left of x1 and to the right of xM , we simply set l(x) to be −∞. The lower hull
function is thus a piecewise linear function and can be written as

l(x) =


−∞ for x0 < x ≤ x1
(xi − x)h(xi−1) + (x− xi−1)h(xi)

xi − xi−1
for xi−1 < x ≤ xi; i = 2, . . . ,M

−∞ for xM < x ≤ xM+1

Note that we do not explicitly store the lower hull function, and instead computing them as needed.

The envelope function and the squeezing function are computed as required. Note that they are given
by expu(x) and exp l(x) respectively. To sample a value from the envelope function, we employ
the inverse cumulative density function (CDF) method, which requires the CDF of the proposal
distribution, s(x), that is proportional to expu(x). The proposal distribution s(x) can be obtained
by normalisation, as follows:

s(x) =
expu(x)∫ x+

x− expu(y) dy

9

We denote the normalisation constant as Q, and can be computed as

Q =

∫ x+

x−
expu(y) dy

=

∫ x+

x−

M∑
i=1

exp
[
h(xi) + (y − xi)h′(xi)

]
I(zi−1 < y ≤ zi) dy

=

M∑
i=1

∫ x+

x−
exp

[
h(xi) + (y − xi)h′(xi)

]
I(zi−1 < y ≤ zi) dy

=

M∑
i=1

∫ zi

zi−1

exp
[
h(xi) + (y − xi)h′(xi)

]
dy

=

M∑
i=1

[
1

h′(xi)
exp

[
h(xi) + (y − xi)h′(xi)

]]zi
zi−1

=

M∑
i=1

1

h′(xi)

(
expu(zi)− expu(zi−1)

)
(3)

Note that each part in the summation in Equation (3), denoted as qi (for i = 1, . . . ,M), can be
evaluated efficiently using the cached values:

qi :=
1

h′(xi)

(
expu(zi)− expu(zi−1)

)
=

1

vi

(
eui − eui−1

)
(4)

We store these values as
q = [q1, . . . ,qM]

After computing Q =
∑

i qi, we can derive the CDF c(x) of the proposal distribution s(x).

c(x) =

∫ x

x−
s(y) d(y)

=
1

Q

∫ x

x−
expu(y) d(y)

=
1

Q

[∫ x

zk

expu(y) d(y) +

k∑
i=1

qi

]

=
1

Q

[
1

h′(xk+1)

(
expu(x)− expu(zk)

)
+

k∑
i=1

qi

]
where k = sup{i | zi < x} is the largest index k such that zk < x is satisfied. We store the
unnormalised CDF, Qc(x), evaluated at each point in z to speed up computation, this is given by

Qc = [Qc0, . . . ,QcM] := [Qc(z0), . . . , Q c(zM)] (5)
(defining c(z0) = 0) and can easily be computed using the cumsum function in MATLAB, that is,
Qc = cumsum([0,q]), since

Qcj = Qc(zj) =
1

h′(xj)

(
expu(zj)− expu(zj−1)

)
+

j−1∑
i=1

qi

= qj +

j−1∑
i=1

qi

=

j∑
i=1

qi (6)

10

Noting that k = sup{i | zi < zj} = j − 1 above.

Sampling Step. With the CDF defined, we can now sample a value x∗ using the inverse CDF
method. This sampling routine is implemented in a loop until N number of samples are accepted.

We first sample a random number w1 from the standard uniform distribution U(0, 1), then find the
value x∗ that satisfies (inverse CDF method)

c(x∗) = w1

The solution to the above equation is simply

x∗ = c−1(w1)

where c−1(x) is the inverse CDF, which is also a piecewise function. To solve for x∗, we find k such
that k = sup{i | zi < c−1(w1)} is satisfied. This gives

k = sup{i | zi < c−1(w1)}
= sup{i | c(zi) < w1}
= inf{i | c(zi+1) ≥ w1}
= inf{i |w1 ≤ c(zi+1)}
= inf{i |Qw1 ≤ Qc(zi+1)}

In particular, we iterate over i = 0, 1, 2, . . . to find the first index i such that the inequality Qw1 ≤
Qc(zi+1) is satisfied. Note that Qc(zj) is cached as Qcj as defined in Equation (5). After having
k, before solving for x∗, we compute u(x∗):

c(x∗) = w1

1

Q

[
1

h′(xk+1)

(
expu(x∗)− expu(zk)

)
+

k∑
i=1

qi

]
= w1

1

h′(xk+1)

(
expu(x∗)− expu(zk)

)
= Qw1 −

k∑
i=1

qi

u(x∗) = log

(
h′(xk+1)

[
Qw1 −

k∑
i=1

qi

]
+ expu(zk)

)
(7)

u(x∗) = log
(
vk+1

(
Qw1 −Qck

)
+ euk

)
Note that u(x∗) is stored for computing the acceptance probability later.

We can then compute x∗ from u(x∗) as follows:

u(x∗) = h(xk+1) + (x∗ − xk+1)h′(xk+1)

(x∗ − xk+1)h′(xk+1) = u(x∗)− h(xk+1)

x∗ =
u(x∗)− h(xk+1)

h′(xk+1)
+ xk+1

x∗ =
u(x∗)− hk+1

vk+1
+ xk+1

Having sampled x∗, we then move on to deciding if the sample is to be accepted as a true sample
from the distribution of interest. The decision is governed by the rejection test. The acceptance
probability to accepting the sample x∗ is

A(x∗) =
exph(x∗)

expu(x∗)

The rejection test can be carried out by first generating a standard uniform variablew2 and then check
if w2 < A(x∗). If the above condition is satisfied, we would accept the sampled x∗, otherwise we
reject the sample.

11

We note that the acceptance probability is lower bounded by

A(x∗) =
exph(x∗)

expu(x∗)
≥ exp l(x∗)

expu(x∗)
= B(x∗)

since l(x) ≤ h(x) for all x. Thus, rather than performing the rejection test that may require ex-
pensive computation of h(x∗), we instead start with the following squeezing test that checks if
w2 < B(x∗), if this condition is satisfied, then we know for sure w2 < B(x∗) ≤ A(x∗) and
we would accept the sample x∗. Otherwise, if the condition is not satisfied, we continue with the
rejection test.

Note that whenever we perform the rejection test, we compute the log likelihood h(x∗). Regardless
of whether the sample x∗ is accepted or not, we will update (improve) the upper hull u(x), the lower
hull l(x), and the associated variables using the newly computed h(x∗). This allows us to sample x
more efficiently in the following iterations. We present the update procedure in detail below.

Update Step. For j such that x∗ > xj and x∗ < xj+1, we update the caches (and renaming the
indices as necessary) as follows:

x := [x0, . . . , xj , x
∗, xj+1, . . . , xM+1]

= [x0, . . . ,xj , x
∗,xj+1, . . . ,xM+1]

h := [h(x0), . . . , h(xj), h(x∗), h(xj+1) . . . , h(xM+1)]

= [h0, . . . ,hj , h(x∗),hj+1, . . . ,hM+1]

v := [h′(x0), . . . , h′(xj), h
′(x∗), h′(xj+1) . . . , h′(xM+1)]

= [v0, . . . ,vj , h
′(x∗),vj+1, . . . ,vM+1]

Since adding a new point x∗ affects the location of both zi on the left of x∗ and on the right of x∗,
we update z by adding z∗j and z∗j+1 (removing original zj) as follows:

z := [z0, . . . , zj−1, z
∗
j , z
∗
j+1, zj+1, . . . , zM]

= [z0, . . . , zj−1, z
∗
j , z
∗
j+1, zj+1, . . . , zM]

where the new z∗i (for i ∈ {j, j + 1}) are computed with Equation (1) using the new x, h, and v.
Note that for the boundary cases j = 0 and j = M , we would fix z∗0 to x− the left bound and z∗M+1

to x+ the right bound.

We also update the cache u and eu accordingly:

u := [u(z0), . . . , u(zj−1), u(z∗j), u(z∗j+1), u(zj+1), . . . , u(zM)]

= [u0, . . . ,uj−1, u(z∗j), u(z∗j+1),uj+1, . . . ,uM]

eu :=
[
eu(z0), . . . , eu(zj−1), eu(z

∗
j), eu(z

∗
j+1), eu(zj+1), . . . , eu(zM)

]
=
[
eu0 , . . . , e

u
j−1, e

u(z∗
j), eu(z

∗
j+1), euj+1, . . . , e

u
M

]
where u(z∗i) are computed with Equation (2). We do not worry about the boundary for u and eu.

Excepting for the boundary cases, when we modify two values in z, three values in q would need to
be modified. In particular, we change qi, where i ∈ {j, j + 1, j + 2}, such that

q := [q1, . . . ,qj−1,q
∗
j ,q
∗
j+1,q

∗
j+2,qj+2, . . . ,qM]

where q∗i is computed using Equation (4). Note that in contrast to the updating rule for other caches,
in this case we have replaced two qi with three q∗i excepting for the boundary cases. For the
boundary case j = 0, we replace q1 with q∗1 and q∗2 . While for the boundary case j = M , we
instead replace qM with q∗M and q∗M+1 .

Finally, we also update Q =
∑

i qi and Qc = cumsum([0,q]).

Code. An implementation of the efficient sampler is represented in Code Appendix C.

12

3.2 Stable Sampler

Here, we discuss an implementation variant of the ARS algorithm, which we name as the stable
sampler. This implementation addresses numerical instability that may present in the efficient sam-
pler described above. This problem arises when the u(zi) is too large in magnitude (either positive
or negative), making its exponent unstable.

In MATLAB, the largest real value that can be stored is 1.7977e+308, and its log is 709.7827. Thus,
the highest u(zi) we can have is 709.7827 before we run into numerical overflow. On the other hand,
the smallest (most negative) real value is 2.2251e-308 with its log -708.3964. If we have u(zi) that
is smaller than -708.3964, then MATLAB will treat its exponent expu(zi) as zero. We will run into
an error when all the expu(zi) are zero.

To bypass this issue, we compute and store the variables in log format. Below, we will detail the
modification to the efficient sampler that gives us the stable sampler. We note that the inputs to the
algorithm remain the same.

Initialisation Step. We initialise x, h, v, z, and u in the exact same way as in the efficient sampler.
Additionally, we also store an additional cache for the log of the derivative:

lnv = [lnv
0, . . . , ln

v
M+1] := [log h′(x0), . . . , log h′(xM+1)] = [logv0, . . . , logvM+1]

We note that since the derivatives can be negative, the log of the derivatives may not be defined.
Note that in such cases, we would store only the log of their absolute value. To illustrate, say the
derivative is −ν where ν is a positive number, then we store log ν instead of log(−ν). Note that this
will not pose any problem since the negative sign in the gradient will be cancelled out later by the
multiplication of another negative number:

log(−ν ×−µ) = log(ν × µ) = log ν + log µ

where µ > 0. In MATLAB, however, we do not need to perform the above since the log of a negative
number will be expressed as a complex number:

log(−ν) = log ν + log(−1) = log ν + πi

We note that the complex number will be cancelled out later when we compute logqi .

Another distinction compared to the efficient sampler is that we do not store eu directly. We instead
store eo that corresponds to an adjusted version of eu.

We first define

umax := max
i
u(zi)

the maximum of the u(zi). We then define o(zi) := u(zi)− umax the adjusted value so we have

o = [o0, . . . ,oM] := [o(z0), . . . , o(zM)] = [u(z0)− umax, . . . , u(zM)− umax]

We store the exponents of o(zi):

eo = [eo0, . . . , e
o
M] :=

[
eo(z0), . . . , eo(zM)

]
.

instead of eu. In this form, the largest value in eo is 1 since the largest value in o is 0. Note that eu
can easily be recovered by

eui = expu(zi) = exp
(
o(zi) + umax

)
= eumax exp o(zi) = eumax eoi

Next, rather than storing Q and qi , which can be large, we store their log values: logQ and logqi .
Recall that

qi :=
1

h′(xi)

(
expu(zi)− expu(zi−1)

)

13

Its log can be computed as

logqi = log

(
1

h′(xi)

(
expu(zi)− expu(zi−1)

))
= − log h′(xi) + log

(
expu(zi)− expu(zi−1)

)
= − log h′(xi) + log

(
eumax exp o(zi)− eumax exp o(zi−1)

)
= − log h′(xi) + umax + log

(
exp o(zi)− exp o(zi−1)

)
= −lnv

i + umax + log
(
eoi − eoi−1

)
Here, care must be taken to ensure the log is defined, this is because both h′(xi) and the difference
exp o(zi)−exp o(zi−1) can be negative. Fortunately, we note that h′(xi) and exp o(zi)−exp o(zi−1)
will always have the same sign:

h′(xi) > 0 =⇒ u(zi)− u(zi−1) > 0

=⇒ o(zi)− o(zi−1) > 0

=⇒ exp o(zi)− exp o(zi−1) > 0

The same can be shown for h′(xi) < 0. Thus, we can simply remove the negative sign (if presence)
inside both log when computing logqi , that is, an alternative way to compute logqi is

logqi = − log |h′(xi)|+ umax + log
(∣∣ exp o(zi)− exp o(zi−1)

∣∣)
In MATLAB, however, this is taken care of automatically since the positive πi and the negative πi
cancel out each other. To illustrate, if h′(xi) < 0 then

− log h′(xi) + log
(

exp o(zi)− exp o(zi−1)
)

= − log
(
− h′(xi)

)
− πi+ log

(
−
(

exp o(zi)− exp o(zi−1)
))

+ πi

= − log
(
− h′(xi)

)
+ log

(
−
(

exp o(zi)− exp o(zi−1)
))

The logqi is stored in lnq:

lnq = [lnq
1, . . . , ln

q
M] := [logq1, . . . , logqM]

Before computing Q, we first derive the cdf c(zj) evaluated at zj (see Equation (6)):

c(zj) =
1

Q

j∑
i=1

qi

=
1

Q

j∑
i=1

exp lnq
i

=
1

Q

j∑
i=1

exp lnq
max × exp

(
lnq

i − lnq
max

)
=

exp lnq
max

Q

j∑
i=1

exp
(
lnq

i − lnq
max

)
where

lnq
max = max

i
lnq

i

14

Since we know c(zM) = 1, we have

1 =
exp lnq

max

Q

M∑
i=1

exp
(
lnq

i − lnq
max

)
Q = exp lnq

max

M∑
i=1

exp
(
lnq

i − lnq
max

)
logQ = lnq

max + log

(
M∑
i=1

exp
(
lnq

i − lnq
max

))
and thus

c(zj) =
exp lnq

max

Q

j∑
i=1

exp
(
lnq

i − lnq
max

)
= exp

(
lnq

max − logQ
) j∑

i=1

exp
(
lnq

i − lnq
max

)
≡

j∑
i=1

exp
(
lnq

i − logQ
)

In the stable implementation, we store the cache

c = [c0, . . . , cM] := [c(z0), . . . , c(zM)]

rather than Qc.

Sampling Step. The sampling procedure for the stable sampler is very similar to the efficient sam-
pler, only the caches used are different.

We first find k by iterating through i such that

k = inf{i |Qw1 ≤ Qc(zi+1)}
= inf{i |w1 ≤ c(zi+1)}

where w1 ∼ U(0, 1) a realised standard uniform random variable.

We then compute u(x∗), from Equation (7):

u(x∗) = log

(
h′(xk+1)

[
Qw1 −

k∑
i=1

qi

]
+ expu(zk)

)

= log

(
h′(xk+1)Q

[
w1 −

1

Q

k∑
i=1

qi

]
+
Q

Q
exp

(
o(zk) + umax

))
= logQ+ log

(
h′(xk+1)

(
w1 − ck

)
+ exp

(
umax − logQ

)
exp o(zk)

)
= logQ+ log

(
vk+1

(
w1 − ck

)
+ exp

(
umax − logQ

)
eok

)
Note that u(x∗) is stored for computing the acceptance probability later.

The sample x∗ can be computed in the same way as the efficient sampler.

x∗ =
u(x∗)− hk+1

vk+1
+ xk+1

We then accept or reject the sample using the same routine as in the efficient sampler.

Update Step. The variable x, h, v, z, and u are updated in the same manner as in the efficient
sampler. Additionally, we also update the log derivative cache lnv as follows:

lnv := [log h′(x0), . . . , log h′(xj), log h′(x∗), log h′(xj+1) . . . , log h′(xM+1)]

[lnv
0, . . . , ln

v
j , log h′(x∗), lnv

j+1 . . . , ln
v
M+1]

15

The other caches umax, eo, lnq , lnq
max, logQ, and c are recomputed from the formulae outlined

above. Due to this, the stable sampler is less efficient compared to the efficient sampler.

Code. A MATLAB implementation of the stable sampler is presented in Code Appendix D.

4 Testing the Implemented ARS Algorithm

We test our implementation on normal distribution and gamma distribution.

Standard Normal. We use the implemented sampler to generate standard normal distribution vari-
ables for testing purpose. The implemented sampler took only 5.88 seconds to generate one million
independent random variables xi ∼ Normal(µ = 0, σ2 = 1) (this is very fast for rejection sam-
pling). From the samples, we compute the sample mean and sample variance as a sanity check
to assess the sampler. The sample mean is found to be x̄ = 0.001145 and the sample variance is
s2x = 1.0014, these values are very close to the ground truth.

In addition, we perform the one-sample Kolmogorov-Smirnov (KS) test to test the samples’ normal-
ity. From the KS test, we fail to reject the null hypothesis that the samples are drawn from standard
normal distribution. Thus we conclude that our sampler correctly generates standard normal random
variables.

Normal Distribution. We then proceed to generating variables from the normal distribution xi ∼
Normal(µ = 3, σ2 = 5). We found that the sample mean and sample variance are

x̄ = 3.00262

s2x = 5.00744

Applying the KS test, we find that the p-value for rejecting the null hypothesis that the samples are
from Normal(µ = 3, σ2 = 5) is 0.4092. Thus we fail to reject the null hypothesis and conclude
that the implemented ARS algorithm is correct.

Code. The test script is presented in Code Appendix E.

Below, we present the final envelope function and the squeezing function after sampling N =
1,000,000 standard normal variables. Note that there are 277 points of x (represented by black
dots) where h(x) and h′(x) is evaluated, this is way below the number of samples N . We can see
that the upper hull function closely resembles the true log likelihood function, while the lower hull
function closely resembles the log likelihood function in the range [x1, x277].

−6 −4 −2 0 2 4 6
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

x

lo
g
 l
ik

e
lih

o
o
d

16

We can see that the envelope function and the squeezing function closely resembles the true likeli-
hood function (un-normalised).

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

li
k
e
li
h
o
o
d

Additionally, we note that the cdf is also very close to the cdf of standard normal distribution:

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

c
u
m

u
la

ti
v
e
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

Gamma Distribution. Besides the normal distribution, we also test the implemented sampler’s
ability to generate gamma random variables. We first note that the probability density function
(pdf) of a gamma distribution xi ∼ Gamma(k, θ) with shape parameter k and scale parameter θ is
log-concave if and only if k > 1. Let the pdf be f(x), we have

f(x) =
1

Γ(k) θk
xk−1 exp

(
− x

θ

)
and the unnormalised pdf is thus

g(x) ∝ f(x)

∝ xk−1 exp
(
− x

θ

)

17

The log likelihood and its derivatives are

h(x) = log g(x)

= (k − 1) log x− x

θ

h′(x) =
k − 1

x
− 1

θ

h′′(x) = −k − 1

x2

Hence we can see that f(x) is log-concave when k > 1. Enforcing the constraint so that f(x) is
log-concave, we set k = 3 and θ = 2. The mean and variance of the gamma distribution are

E[X] = kθ = 6

V[X] = kθ2 = 12

With the implemented ARS algorithm, we simulate N = 1,000,000 samples and compute their
sample mean and sample variance. We found that the sample mean and the sample variance are very
close to the theoretical counterparts:

x̄ = 6.00691

s2x = 11.983

In addition, we also perform the one sample KS test for gamma distribution, with null hypothesis
being that the samples are generated from Gamma(k = 3, θ = 2). The result from this is that
we fail to reject the null hypothesis (with p-value 0.06202). This gives confidence that the ARS
algorithm is implemented correctly.

Code. The script to sample and test the gamma random variables is presented in Code Appendix F.

5 Using the Code

Please cite this report if you are using our ARS implementation:

Lim, K. W. (2018). A Stable Implementation of the Adaptive Rejection Sampler
in MATLAB. Technical Report, National University of Singapore.

The code is available at the author’s website.2

References
Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the

Royal Statistical Society. Series C (Applied Statistics), 41(2):337–348.

2 https://karwailim.github.io/

18

https://karwailim.github.io/

Code

Code is released under MIT License:

MIT License

Copyright (c) [2018] [Kar Wai Lim]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

A Demo: Generating a Sample

Part of example.m

%%% This script provides step-by-step tutorial to illustrate the adaptive
%%% rejection sampling (ARS) method.
%%% In this example, we sample from normal (gaussian) distribution.

% clc;
clear all; close all; % clear console

% set seed
rng(11111);

%% Settings

% parameters for normal distribution
mu = 0;
sigma2 = 1;

% support of the distribution
left_bound = -inf;
right_bound = inf;

% likelihood up to a proportionality constant
g = @(x) exp(-1/2 .* (x - mu).ˆ2 ./ sigma2);

% log of likelihood g(x)
h = @(x) -1/2 .* (x - mu).ˆ2 ./ sigma2;

% first derivative of h(x)
d = @(x) -(x - mu) ./ sigma2;

%% ARS

% choose two starting points x1, x2
x1 = -1;
x2 = 2;

x = [x1, x2];

% evaluate the log likelihood h(x)
llik1 = h(x1);
llik2 = h(x2);

llik = [llik1, llik2];

% evaluate the gradients h’(x)
grad1 = d(x1);
grad2 = d(x2);

grad = [grad1, grad2];

% find intersections of the tangents for x1 and x2

19

z0 = left_bound;
z1 = (llik2 - llik1 - x2*grad2 + x1*grad1) / (grad1 - grad2);
z2 = right_bound;

z = [z0, z1, z2];

% piecewise upper hull (for envelope) function u(x) follows this form
% u_k(x) = h(x_j) + (x - x_j)*d(x_j)
% for j = 1,2; x in [z_(j-1), z_j]

% find u(z), upper hull at the intersection
u_z0 = -inf;
u_z1 = llik1 + (z1 - x1)*grad1;
u_z2 = llik2 + (z2 - x2)*grad2;

u_z = [u_z0, u_z1, u_z2];

% piecewise lower hull (for squeezing) function l(x) follows this form
% l_k(x) = ((x_(j+1) - x)*h(x_j) + (x - x_j)*h(x_(j+1))) / (x_(j+1) - x_j)
% for j = 1; x in [x_j, x_(j+1)]
% note l_k(x) = -inf for all other x (x < x1, x > x2)

% to find the envelope function, we first compute the normalising constant Q
cdf_part_z1 = 1/grad1 * (exp(u_z1) - exp(u_z0)); % area under the curve for the first piece
cdf_part_z2 = 1/grad2 * (exp(u_z2) - exp(u_z1));

cdf_part_z = [cdf_part_z1, cdf_part_z2];

Q = sum(cdf_part_z);
Q_ = (1/grad1 - 1/grad2)*exp(u_z1); % for checking

% piecewise cdf for the envelope function, \int exp u(x) follows this form
% c_k(x) = 1/norm_const * (\int_(u<k) c_u(x) + \int_x c_k(x))
% for j = 1,2; x in [z_{j-1}, z_j]

% sample a standard uniform random variable to generate a sample x via the
% inverse cdf method
w1 = rand; % 0.8389 with seed 11111

% find x corresponds to w1, we times w1 by Q since it is easier to work on
% the un-normalised space
Qw1 = Q*w1;

cdf_z = cumsum(cdf_part_z);

u_x = nan;
if Qw1 < cdf_z(1) % belong to first piece

u_x = log(Qw1 * grad1);
sampled_x = x1 + (u_x - llik1)/grad1;

elseif Qw1 < cdf_z(2)
A2 = (Qw1 - cdf_z(1))*grad2 + exp(u_z1);
u_x = log(A2);
sampled_x = x2 + (u_x - llik2)/grad2;

end

% squeezing test
w2 = rand; % 0.4789

squeezing_test = false;
for j = 1:(length(x)-1)

if and(sampled_x > x(j), sampled_x < x(j+1))
l_x = ((x(j+1) - sampled_x)*llik(j) + (sampled_x - x(j))*llik(j+1)) / (x(j+1) - x(j));
squeeze_ratio = exp(l_x - u_x);
squeezing_test = w2 < squeeze_ratio; % 0.4789 < 0.1818, therefore reject

end
end

% display test result
squeezing_test %#ok<NOPTS>
% if the test pass we do not have to perform the acceptance/rejection test

% acceptance rejection test
rejection_test = false;
h_x = nan;
for j = 1:(length(x)-1)

if and(sampled_x > x(j), sampled_x < x(j+1))
h_x = h(sampled_x);
acceptance_ratio = exp(h_x - u_x);
rejection_test = w2 < acceptance_ratio; % 0.4789 < 0.5242, therefore accept

end
end

% display test result
rejection_test %#ok<NOPTS>
% if the test pass then we accept the sample, in any case we update the
% envelope function and squeezing function since we have evaluated h(x*)

%% PLOT

left_xlim = -5;
right_xlim = 5;

20

granularity = 0.01;

% draw log likelihood, upper hull and lower hull function
figure;
hold on;

% plot log likelihood
plot_x = left_xlim:granularity:right_xlim; % range of x for plot
plot_y = h(plot_x);
plot(plot_x,plot_y,’color’, ’blue’);

% plot upper hull function
plot_u = inf(size(plot_x)); % initialise
for j = 1:length(x)

indice = and(z(j) <= plot_x, plot_x < z(j+1)); % indice of plot_x in abscissae k
plot_u(indice) = llik(j) + (plot_x(indice) - x(j)).*grad(j);

end
plot(plot_x,plot_u,’color’,’red’);

% mark tangent points
plot(x, llik, ’k+’);

% plot lower hull function
plot_l = -inf(size(plot_x)); % initialise
for j = 1:(length(x)-1)

indice = and(x(j) <= plot_x, plot_x < x(j+1)); % indice of plot_x in abscissae k
plot_l(indice) = ((x(j+1) - plot_x(indice)).*llik(j) + (plot_x(indice) - x(j)).*llik(j+1)) ./ (x(j+1) - x(j

));
end
plot(plot_x,plot_l,’color’,’green’); % squeezing function between x’s

YL = ylim; % get the y limits
line([x(1) x(1)], [YL(1) llik(1)], ’color’,’green’); % squeezing function outside x’s = -inf
line([x(end) x(end)], [YL(1) llik(end)], ’color’,’green’); % squeezing function outside x’s = -inf

% axis([10,inf,-0.005,0.015]);
xlabel(’x’); % x-axis label
ylabel(’log likelihood’); % y-axis label

% draw the likelihood, envelope function and the squeezing function
figure;
hold on;

% plot likelihood
plot_f = g(plot_x);
plot(plot_x,plot_f,’color’, ’blue’);

% envelope function
plot(plot_x,exp(plot_u), ’color’, ’red’);

% squeezing function
plot(plot_x,exp(plot_l), ’color’, ’green’);

% mark tangent points
plot(x, exp(llik), ’k+’);

% axis([10,inf,-0.005,0.015]);
xlabel(’x’); % x-axis label
ylabel(’likelihood’); % y-axis label

% draw the cdf of the envelope function
figure;
hold on;

% plot cdf
plot_c = zeros(size(plot_x)); % initialise
cum_temp = 0; % temporary variable to store the cumulative
for j = 1:length(x)

indice = and(z(j) <= plot_x, plot_x < z(j+1)); % indice of plot_x in abscissae k
plot_c(indice) = cum_temp + 1./grad(j).*(exp(plot_u(indice)) - exp(u_z(j)));
cum_temp = cum_temp + 1/grad(j)*(exp(u_z(j+1)) - exp(u_z(j)));

end
plot_c = plot_c / cum_temp;
plot(plot_x,plot_c,’color’,’red’);

% plot the piecewise changing point
YL = ylim; % get the y limits
for j = 1:length(z)

line([z(j) z(j)], YL, ’color’,’blue’, ’linestyle’, ’:’);
end

% plot the sample_x
XL = xlim;
line([sampled_x sampled_x], [YL(1) w1], ’color’,’green’, ’linestyle’, ’:’);
line([XL(1) sampled_x], [w1 w1], ’color’,’green’, ’linestyle’, ’:’);

xlabel(’x’); % x-axis label
ylabel(’cumulative density function’); % y-axis label

21

B Demo: Updating Envelope and Squeezing Function

Part of example.m

%% UPDATE ENVELOPE AND SQUEEZING FUNCTIONS (NAIVE WAY)

% We add the sampled x* to the list of x and update the envelope and
% squeezing function

x = sort([left_bound, x, sampled_x, right_bound]);
% x = sort([left_bound, x, right_bound]); % for testing (check with above demo)

% evaluate the log likelihood h(x)
llik = h(x);

% evaluate the gradients h’(x)
grad = d(x);

% number of points
K = length(x);

% find intersections of the tangents
ind = 2:(K-2);

z = [left_bound, ...
(llik(ind+1) - llik(ind) - x(ind+1).*grad(ind+1) + x(ind).*grad(ind)) ...

./ (grad(ind) - grad(ind+1)), ...
right_bound];

% piecewise upper hull (for envelope) function u(x) follows this form
% u_k(x) = h(x_j) + (x - x_j)*d(x_j)
% for j = 1,2; x in [z_(j-1), z_j]

% find u(z), upper hull at the intersection
indz = 2:(K-1);

u_z = [llik(2) + (z(1) - x(2))*grad(2) , ... % the first u_z use the gradient of the next piece
llik(indz) + (z(indz) - x(indz)).*grad(indz)];

exp_u_z = exp(u_z);

% to find the envelope function, we first compute the normalising constant Q
cdf_part_z = 1./grad(indz) .* (exp_u_z(indz) - exp_u_z(indz-1));

Q = sum(cdf_part_z);

%% PLOT

left_xlim = -5;
right_xlim = 5;

granularity = 0.01;

% draw log likelihood, upper hull and lower hull function
figure;
hold on;

% plot log likelihood
plot_x = left_xlim:granularity:right_xlim; % range of x for plot
plot_y = h(plot_x);
plot(plot_x,plot_y,’color’, ’blue’);

% plot upper hull function
plot_u = inf(size(plot_x)); % initialise
for j = 1:length(z)-1

indice = and(z(j) <= plot_x, plot_x < z(j+1)); % indice of plot_x in abscissae k
plot_u(indice) = llik(j+1) + (plot_x(indice) - x(j+1)).*grad(j+1);

end
plot(plot_x,plot_u,’color’,’red’);

% mark tangent points
plot(x, llik, ’k+’);

% plot lower hull function
plot_l = -inf(size(plot_x)); % initialise
for j = 2:length(z)-1

indice = and(x(j) <= plot_x, plot_x < x(j+1)); % indice of plot_x in abscissae k
plot_l(indice) = ((x(j+1) - plot_x(indice)).*llik(j) + (plot_x(indice) - x(j)).*llik(j+1)) ./ (x(j+1) - x(j

));
end
plot(plot_x,plot_l,’color’,’green’); % squeezing function between x’s

YL = ylim; % get the y limits
line([x(2) x(2)], [YL(1) llik(2)], ’color’,’green’); % squeezing function outside x’s = -inf
line([x(end-1) x(end-1)], [YL(1) llik(end-1)], ’color’,’green’); % squeezing function outside x’s = -inf

% axis([10,inf,-0.005,0.015]);
xlabel(’x’); % x-axis label
ylabel(’log likelihood’); % y-axis label

22

% draw the likelihood, envelope function and the squeezing function
figure;
hold on;

% plot likelihood
plot_f = g(plot_x);
plot(plot_x,plot_f,’color’, ’blue’);

% envelope function
plot(plot_x,exp(plot_u), ’color’, ’red’);

% squeezing function
plot(plot_x,exp(plot_l), ’color’, ’green’);

% mark tangent points
plot(x, exp(llik), ’k+’);

XL = xlim;
YL = ylim;
axis([XL(1), XL(2), YL(1), 3]);
xlabel(’x’); % x-axis label
ylabel(’likelihood’); % y-axis label

% draw the cdf of the envelope function
figure;
hold on;

% plot cdf
plot_c = zeros(size(plot_x)); % initialise
cum_temp = 0; % temporary variable to store the cumulative
for j = 1:length(z)-1

indice = and(z(j) <= plot_x, plot_x < z(j+1)); % indice of plot_x in abscissae k
plot_c(indice) = cum_temp + 1./grad(j+1).*(exp(plot_u(indice)) - exp(u_z(j)));
cum_temp = cum_temp + 1/grad(j+1)*(exp(u_z(j+1)) - exp(u_z(j)));

end
plot_c = plot_c / cum_temp;
plot(plot_x,plot_c,’color’,’red’);

% plot the piecewise changing point
YL = ylim; % get the y limits
for j = 1:length(z)

line([z(j) z(j)], YL, ’color’,’blue’, ’linestyle’, ’:’);
end

xlabel(’x’); % x-axis label
ylabel(’cumulative density function’); % y-axis label

C Efficient Sampler for ARS

In ARS sample fast.m

function [samples] = ARS_sample_fast(N, llik_func, ldev_func, init, bounds)
%ARS_SAMPLE Sample using ARS
% Derivative-based ARS method
%
% Variables:
% N = number of samples
% llik_func = log likelihood function
% ldev_func = derivative of log likelihood function
% init = vector of initial points (for envelope & squeezing function)
% bounds = boundary of the distribution support
%
% Author: KW Lim
% Last modified: 12 April 2016

% initialise generated values
samples = nan(N,1);

% initial points for envelope and squeezing function
x = sort([init, bounds]); % include left right bounds

% evaluate the log likelihood h(x)
llik = llik_func(x); % include left right bounds

% evaluate the gradients h’(x)
grad = ldev_func(x); % include left right bounds

% number of points
K = length(x); % include left right bounds

% check correctness of initial points before proceeding
if length(init) <= 1

error(’ERROR: Not enough initial points!’)
end
if or(min(init) < min(bounds), max(init) > max(bounds))

23

error(’ERROR: Initial points out of bound!’)
end
if ˜and(grad(2) > 0, grad(K-1) < 0)

error(’ERROR: Initial points invalid (derivatives same sign)’)
end
if any(grad == 0)

error(’ERROR: Initial point have derivative zero!’)
end
if length(unique(init)) ˜= length(init)

error(’ERROR: Initial points repeated more than once!’)
end

% find intersections of the tangents
ind = 2:(K-2);

z = [min(bounds), ...
(llik(ind+1) - llik(ind) - x(ind+1).*grad(ind+1) + x(ind).*grad(ind)) ...

./ (grad(ind) - grad(ind+1)), ...
max(bounds)];

% piecewise upper hull (for envelope) function u(x) follows this form
% u_k(x) = h(x_j) + (x - x_j)*d(x_j)
% for j = 1,2; x in [z_(j-1), z_j]

% find u(z), upper hull at the intersection
indz = 2:(K-1);

u_z = [llik(2) + (z(1) - x(2))*grad(2) , ... % the first u_z use the gradient of the next piece
llik(indz) + (z(indz) - x(indz)).*grad(indz)];

exp_u_z = exp(u_z);

% piecewise lower hull (for squeezing) function l(x) follows this form
% l_k(x) = ((x_(j+1) - x)*h(x_j) + (x - x_j)*h(x_(j+1))) / (x_(j+1) - x_j)
% for j = 1; x in [x_j, x_(j+1)]
% note l_k(x) = -inf for all other x (x < x1, x > x2)

% to find the envelope function, we first compute the normalising constant Q
cdf_part_z = [0, ...

1./grad(indz) .* (exp_u_z(indz) - exp_u_z(indz-1))];

cdf_z = cumsum(cdf_part_z);
Q = cdf_z(end);

iter = 1;
while iter <= N

% sample a standard uniform random variable to generate a sample x via the
% inverse cdf method
w1 = rand; % 0.8389 with seed 11111

% find x corresponds to w1, we times w1 by Q since it is easier to work on
% the un-normalised space
Qw1 = Q*w1;

u_x = nan; % initialise
for j = 2:length(cdf_z)

if Qw1 < cdf_z(j)
u_x = log((Qw1 - cdf_z(j-1))*grad(j) + exp_u_z(j-1));
sampled_x = x(j) + (u_x - llik(j))/grad(j);
break

end
end

% squeezing test
w2 = rand; % 0.4789

% find j such that [sampled_x > x(j)] AND [sampled_x < x(j+1)]
for k = 1:(length(x)-1)

if and(sampled_x > x(k), sampled_x < x(k+1))
j = k;
break

end
end

% compute l_x for squeezing test
if and(j > 1, j < length(x)-1)

l_x = ((x(j+1) - sampled_x)*llik(j) + (sampled_x - x(j))*llik(j+1)) / (x(j+1) - x(j));
else

l_x = -inf;
end

squeeze_ratio = exp(l_x - u_x);

% if success
if w2 < squeeze_ratio

samples(iter) = sampled_x;
iter = iter + 1;
% if fail

else

24

% perform rejection test if failed squeezing test
h_x = llik_func(sampled_x);
acceptance_ratio = exp(h_x - u_x);

% if success
if w2 < acceptance_ratio

samples(iter) = sampled_x;
iter = iter + 1;

end

%%% update envelope and squeezing function if evaluate h_x
% update x
x = [x(1:j), sampled_x, x(j+1:end)];
% update llik
llik = [llik(1:j), h_x, llik(j+1:end)];
% update grad
grad = [grad(1:j), ldev_func(sampled_x), grad(j+1:end)];
% update z
if j == 1

% boundary case
ind = j+1;

elseif j == length(x)-2 % note x already increase in size
% boundary case
ind = j;

else
ind = j:j+1;

end

z = [z(1:ind(1)-1), ...
(llik(ind+1) - llik(ind) - x(ind+1).*grad(ind+1) + x(ind).*grad(ind)) ...

./ (grad(ind) - grad(ind+1)), ...
z(ind(end):end)];

% update u_z
indu = j:j+1;
u_z = [u_z(1:indu(1)-1), ...

llik(indu) + (z(indu) - x(indu)).*grad(indu), ...
u_z(indu(end):end)];

exp_u_z = [exp_u_z(1:indu(1)-1), exp(u_z(indu)), exp_u_z(indu(end):end)];
% update cdf_part
if j == 1

% boundary case
indc = j+1:j+2;

elseif j == length(x)-2 % note x already increase in size
% boundary case
indc = j:j+1;

else
indc = j:j+2;

end

cdf_part_z = [cdf_part_z(1:indc(1)-1), ...
1./grad(indc) .* (exp_u_z(indc) - exp_u_z(indc-1)), ...
cdf_part_z(indc(end):end)];

cdf_z = cumsum(cdf_part_z);
Q = cdf_z(end);

end
end
end

D Stable Sampler for ARS

In ARS sample stable.m

function [samples] = ARS_sample_stable(N, llik_func, ldev_func, init, bounds)
%ARS_SAMPLE Sample using ARS
% Derivative-based ARS method
%
% Variables:
% N = number of samples
% llik_func = log likelihood function
% ldev_func = derivative of log likelihood function
% init = vector of initial points (for envelope & squeezing function)
% bounds = boundary of the distribution support
%
% Author: KW Lim
% Last modified: 13 April 2016

% initialise generated values
samples = nan(N,1);

% initial points for envelope and squeezing function
x = sort([init, bounds]); % include left right bounds

% evaluate the log likelihood: h(x)
llik = llik_func(x); % include left right bounds

25

% evaluate the gradients: h’(x)
grad = ldev_func(x); % include left right bounds

% log of gradients: log h’(x)
logGrad = log(grad); % can be complex number in MATLAB (warning if porting to other languages)

% number of points
K = length(x); % include left right bounds

% check correctness of initial points before proceeding
if length(init) <= 1

error(’ERROR: Not enough initial points!’)
end
if or(min(init) < min(bounds), max(init) > max(bounds))

error(’ERROR: Initial points out of bound!’)
end
if ˜and(grad(2) > 0, grad(K-1) < 0)

error(’ERROR: Initial points invalid (derivatives same sign)’)
end
if any(grad == 0)

error(’ERROR: Initial point have derivative zero!’)
end
if length(unique(init)) ˜= length(init)

error(’ERROR: Initial points repeated more than once!’)
end

%%% INITIALISE
% find intersections of the tangents
ind = 2:(K-2);

z = [min(bounds), ...
(llik(ind+1) - llik(ind) - x(ind+1).*grad(ind+1) + x(ind).*grad(ind)) ...

./ (grad(ind) - grad(ind+1)), ...
max(bounds)];

% find u(z), upper hull at the intersection
indz = 2:(K-1);

u_z = [llik(2) + (z(1) - x(2))*grad(2) , ... % the first u_z use the gradient of the next piece
llik(indz) + (z(indz) - x(indz)).*grad(indz)];

max_u_z = max(u_z); % find the largest u_z for normalisation
norm_u_z = u_z - max_u_z; % normalise u_z

exp_norm_u_z = exp(norm_u_z);

% to find the envelope function, we first compute the normalising constant Q
indz = 2:(length(x)-1);
log_cdf_part_z = [-inf, ...

- logGrad(indz) ...
+ max_u_z + log(exp_norm_u_z(indz) - exp_norm_u_z(indz-1))]; % complex number cancelled out

max_log_cdf_part_z = max(log_cdf_part_z);
norm_log_cdf_part_z = log_cdf_part_z - max_log_cdf_part_z;

norm_cdf_z = cumsum(exp(norm_log_cdf_part_z));
Q2 = norm_cdf_z(end);
norm_cdf_z = norm_cdf_z / Q2;
logQ = log(Q2) + max_log_cdf_part_z;

%%% SAMPLING
iter = 1;
while iter <= N

% sample a standard uniform random variable to generate a sample x via the
% inverse cdf method
w1 = rand; % 0.8389 with seed 11111

% find x corresponds to w1
u_x = nan; % initialise
for j = 2:length(norm_cdf_z)

if w1 < norm_cdf_z(j)
u_x = logQ + log((w1 - norm_cdf_z(j-1))*grad(j) + exp_norm_u_z(j-1)*exp(max_u_z - logQ));
sampled_x = x(j) + (u_x - llik(j))/grad(j);
break

end
end

% squeezing test
w2 = rand; % 0.4789

% find j such that [sampled_x > x(j)] AND [sampled_x < x(j+1)]
for k = 1:(length(x)-1)

if and(sampled_x > x(k), sampled_x < x(k+1))
j = k;
break

end
end

% compute l_x for squeezing test

26

if and(j > 1, j < length(x)-1)
l_x = ((x(j+1) - sampled_x)*llik(j) + (sampled_x - x(j))*llik(j+1)) / (x(j+1) - x(j));

else
l_x = -inf;

end

squeeze_ratio = exp(l_x - u_x);

% if success
if w2 < squeeze_ratio

samples(iter) = sampled_x;
iter = iter + 1;
% if fail

else
% perform rejection test if failed squeezing test
h_x = llik_func(sampled_x);
acceptance_ratio = exp(h_x - u_x);

% if success
if w2 < acceptance_ratio

samples(iter) = sampled_x;
iter = iter + 1;

end

%%% update envelope and squeezing function if evaluate h_x
% update x
x = [x(1:j), sampled_x, x(j+1:end)];
% update llik
llik = [llik(1:j), h_x, llik(j+1:end)];
% update grad
grad_sampleX = ldev_func(sampled_x);
grad = [grad(1:j), grad_sampleX, grad(j+1:end)];
% update log grad
logGrad = [logGrad(1:j), log(grad_sampleX), logGrad(j+1:end)];
% update z
if j == 1

% boundary case
ind = j:j+1;

elseif j == length(x)-2 % note x already increase in size
% boundary case
ind = j;

else
ind = j:j+1;

end
z = [z(1:ind(1)-1), ...

(llik(ind+1) - llik(ind) - x(ind+1).*grad(ind+1) + x(ind).*grad(ind)) ...
./ (grad(ind) - grad(ind+1)), ...

z(ind(end):end)];

% update u_z
u_z = [u_z(1:ind(1)-1), ...

llik(ind) + (z(ind) - x(ind)).*grad(ind), ...
u_z(ind(end):end)];

max_u_z = max(u_z); % find the largest u_z for normalisation
norm_u_z = u_z - max_u_z; % normalise u_z

exp_norm_u_z = exp(norm_u_z);

% update the rest
indz = 2:(length(x)-1);
log_cdf_part_z = [-inf, ...

- logGrad(indz) ...
+ max_u_z + log(exp_norm_u_z(indz) - exp_norm_u_z(indz-1))]; % complex number cancelled out

max_log_cdf_part_z = max(log_cdf_part_z);
norm_log_cdf_part_z = log_cdf_part_z - max_log_cdf_part_z;

norm_cdf_z = cumsum(exp(norm_log_cdf_part_z));
Q2 = norm_cdf_z(end);
norm_cdf_z = norm_cdf_z / Q2;
logQ = log(Q2) + max_log_cdf_part_z;

end
end
end

E Test: Normal Distribution

In testARS fast normal.m and testARS stable normal.m

%%% This script test the implemented ARS method.

clc; clear all; close all; % clear console

% set seed
rng(151891);

27

%% SETTINGS

% number of samples
N = 1000000;

% parameters for normal distribution
mu = 3.0;
sigma2 = 5.0;

% support of the distribution
left_bound = -inf;
right_bound = inf;
bounds = [left_bound, right_bound];

% log of likelihood, h(x) = log g(x)
llik_func = @(x) -1/2 .* (x - mu).ˆ2 ./ sigma2;

% first derivative of d(x) = d/dx h(x)
ldev_func = @(x) -(x - mu) ./ sigma2;

% initial points
init = [-3, -1, 2, 4];

% generate samples using ARS
tic % start timer
samples = ARS_sample(N, llik_func, ldev_func, init, bounds);
toc % end timer

mu_est = mean(samples)
var_est = var(samples)

% KS test
% h = 0 => standard normal, h = 1 => not standard normal, p is p-value
[h,p] = kstest((samples - mu)./sqrt(sigma2))
[h,p] = kstest(samples, [samples normcdf(samples, mu, sqrt(sigma2))])

F Test: Gamma Distribution

In testARS fast gamma.m and testARS stable gamma.m

%%% This script test the implemented ARS method by simulating gamma dist.

clc; clear all; close all; % clear console

% set seed
rng(2848428);

%% SETTINGS

% number of samples
N = 1000000;

% parameters for normal distribution
shape = 3.0;
scale = 2.0;

% support of the distribution
left_bound = 0;
right_bound = 9e99;
bounds = [left_bound, right_bound];

% log of likelihood, h(x) = log g(x)
llik_func = @(x) (shape-1).*log(x) - x./scale;

% first derivative of d(x) = d/dx h(x)
ldev_func = @(x) (shape-1)./x - 1./scale;

% initial points
init = [1, 2, 5, 7];

% generate samples using ARS
tic % start timer
samples = ARS_sample(N, llik_func, ldev_func, init, bounds);
toc % end timer

mu_est = mean(samples)
var_est = var(samples)

% KS test
% h = 0 => correct distribution, h = 1 => not correct, p is p-value
[h,p] = kstest(samples, [samples, gamcdf(samples, shape, scale)])

28

	Adaptive Rejection Sampling
	Derivative-based ARS
	Demonstration of ARS

	Algorithm for ARS
	Efficient Sampler
	Stable Sampler

	Testing the Implemented ARS Algorithm
	Using the Code
	Demo: Generating a Sample
	Demo: Updating Envelope and Squeezing Function
	Efficient Sampler for ARS
	Stable Sampler for ARS
	Test: Normal Distribution
	Test: Gamma Distribution

