Traffic Flow Modelling with Point Processes

Kar Wai Lim Data61/CSIRO

Joint work with Weihong Wang, Hoang Nguyen, Young Lee, Chen Cai, and Fang Chen

www.csiro.au

DATA

61

Why Model Traffic Flow?

Congestion in Sydney

- Economic Cost
 - Congestion costs Sydney \$4.6 billion a year.
- Business Impact
 - Lost productivity, higher operational cost, and lower business attractiveness.

How we Model Traffic Flow?

Modelling with Point Processes

- A point process models a series of events (e.g. traffic flow) that can be treated as a point in time (and space).
- Can capture the clustering effect of events (one excites another).
- We model the occurrence of traffic flows as modulated by external events such as news and tweets.

In the news

Road Rage: Boxing brawl on busy Sydney road 9news.com.au - 7 hours ago A Sydney man has been recorded in broad daylight landing more than a dozen ... Top News.

Weather forecast: Rain for Sydney, Melbourne, Brisbane, Adelaide, Hobart NEWS.com.au - 23 hours ago

Man punches tattooed driver a dozen times in Sydney road rage brawl Yahoo7 News - 4 hours ago

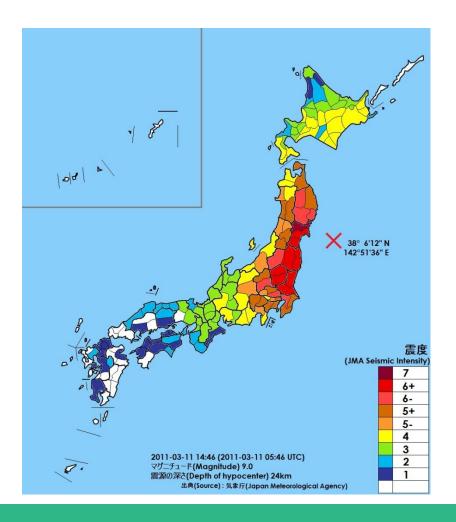
More news for Sydney news

NSW News | Latest & Breaking News Sydney, NSW

www.smh.com.au/nsw 🔻

Read the latest and breaking **news** from **Sydney** and NSW. Get a fresh perspective on **Sydney** arts & culture, real estate and dining, plus local events.

Point Process – Overview

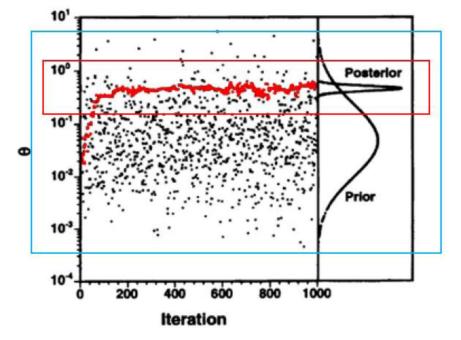


Intensity Function

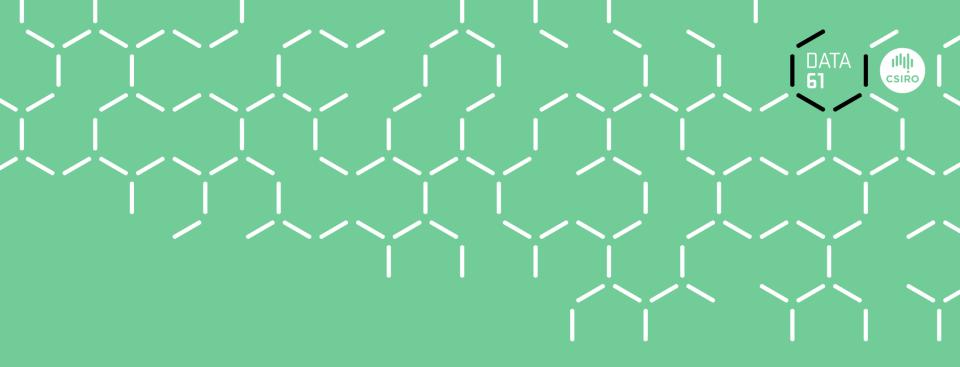
- Describes the rate of occurrence of an event.
- The higher the intensity at one point, the higher the chance of seeing an event at that point.
- We let the intensity of traffic flow to be 'excited' by an external event (such as news).

$$\lambda_t = a + \sum_{j=1}^{J_t} X_j \, e^{-\delta(t-s_j)}$$

• (our intensity is a function over time)



Learning the Intensity Function



Bayesian Inference

- A hybrid of Markov chain Monte Carlo methods.
 - Gibbs samplers.
 - Metropolis-Hastings algorithm.
- Find the posteriors of the parameters i.e. what is the most probable given data and also prior information.
- Posterior = Likelihood x Prior

$$\mathbf{P}(a,\mu,\delta,lpha,eta,\mathbf{X}\,|\,\mathbf{t},\mathbf{s}) \propto \mathbf{P}(\mathbf{t},\mathbf{s}\,|\,a,\delta,\mathbf{X})\,\mathbf{P}(a,\mu,\delta,lpha,eta)$$

Getting the Data

Traffic Flow Data

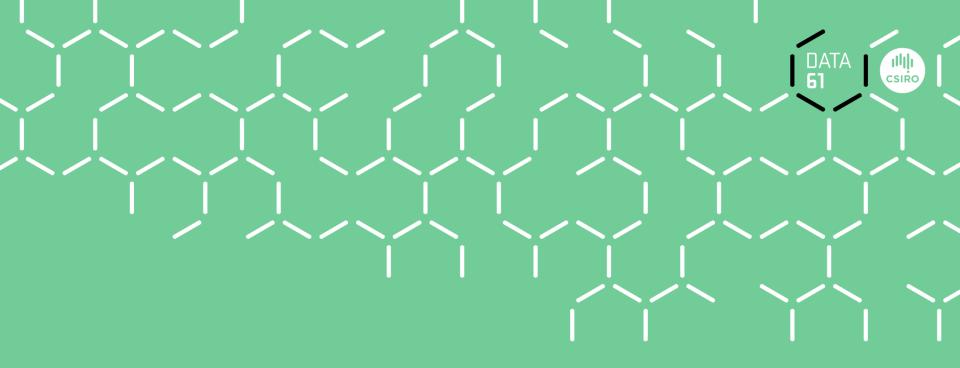
SCATS - Intelligent Traffic Management

- Data from SCATS (Sydney Coordinated Adaptive Traffic System).
- Vehicles passing through intersections are observed by detectors (numbered in figure).
- We process the data and treat each vehicle passing as an 'event' for the point process.

Tweets on Traffic

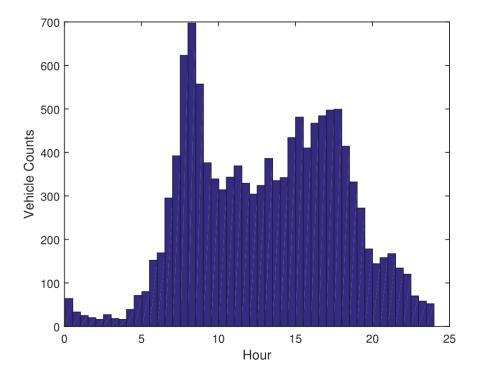
Traffic Watch

- Tweets are collected and are categorised to be traffic related or not using the Traffic Watch system.
- Traffic related tweets are treated as 'external events' for the point process.


Traffic Watch Annotation System

More Examples

- Name entity recognition (NER) is used to detect type of roads and the parties involved.
- SVM classifier is used to determine whether a tweet is relevant to traffic or not.

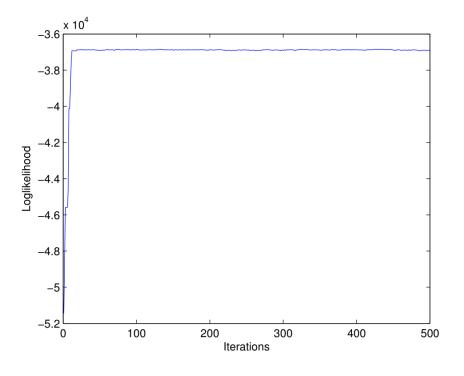

Some Results

Sydney Traffic Flow

Traffic Flow Data (from SCATS)

- Traffic flow on south of NSW, far away from city, on 30th March 2015.
- About 12k events observed.
- Histogram shows that the traffic flow volume is not uniform through time.

Modelling Results

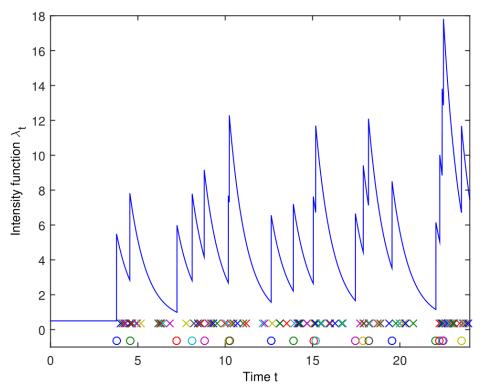


Parameters Learning

• Learned parameter values:

 $\hat{a} = 0.1440$ $\hat{\mu} = 0.0005$

- $\hat{\delta} = 3.0334 \qquad \qquad \hat{\beta} = 3.4104$
- What does this mean?
 - We expect on average 0.144 vehicle per second, or about 9 vehicles per minute.
 - Each tweet generates an expected number of 0.09666 vehicle.


Loglikelihood Trace – algorithm converged quickly

Simulations of Traffic Flow

Using Learned Parameter Results

- The learned parameters are used to forecast and predict future traffic flows in Sydney.
- A simulation example is shown on the right.
 - Circles are external events that 'excite' traffic flows.
 - Crosses are traffic flow 'events'.
 - Each occurrence of external events triggers an increase of 'intensity' which in turn leads to traffic flows.

Our Aims

Intelligent Transport System

- To incorporate traffic flow modelling for intelligent transport system as part of smart cities management.
- Smart planning and optimisation to reduce economic cost and business impact from congestion.
- To lower stress in drivers and pedestrians caused by traffic conditions.

Future Work

Improving Traffic Flow Modelling

- Incorporate other type of event data:
 - Calendar events, e.g. festivals.
- Use Natural Language Processing (NLP) to understand text and its influence.
- Stochastic excitations
 - Model the 'excitations' as a stochastic process events that come first have greater influence.

