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Abstract

The main objective of this article is to predict the traffic flow for the purpose of urban traffic
management. Long term incidents, such as floods, road maintenance or major traffic incidents
can cause significant disruptions on the traffic flows in large metropolitan areas such as Sydney.
There is a need to comprehend how traffic will be impacted in a city during such an event.
One main reason for this is to manage the flow of this traffic so that it does not obstruct with
emergency protocols. Such modelling requires the capturing of fast-evolving and ever changing
conditions, taking into account road closures, Twitter or Facebook information as well as other
circumstances. One important characteristic in traffic flow modelling is the ability to describe
traffic burstiness, i.e. vehicles tend to cluster together, thus creating traffic congestion. This pa-
per provides some promising results in regards to traffic flow modelling using point processes
framework. We are able to simulate traffic flow that mimics real life conditions, and also per-
form efficient inference thereof.
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1. Introduction

The use of social media information to provide insight into traffic management is not new (see
Zhang et al., 2015). In this paper, we propose to use readily available news from social media
such as Twitter and Facebook as defining features to model traffic flow in major cities. We
propose a variation of the shot noise Cox processes (Cox and Isham, 1980) to model traffic
flow. This parameterisation allows us to incorporate the availability of these social media data
to accurately capture the correlations of incident times and traffic burstiness, which is inherent
in traffic.

Since the number of vehicles for a given road is a counting process, we feel that the frame-
work of modelling traffic flow should be discrete in nature. This is in contrast to the recent
work by Tahmasbi and Hashemi (2014), where the authors proposed a continuous variable to
model the rate of flow of traffic through a mean reverting dynamics. We also note that although
our work is motivated by the flow modelling of Menon et al. (2015), we employ a different
approach to tackling the problem, that is, using point processes.



2. Problem Statement

The aim of this work is to model the traffic flow for urban traffic management. Major incidents
such as floods, road maintenance or major traffic can cause significant disruptions on the traffic
flow. One main reason for this is to manage the flow of this traffic so that it does not obstruct
with emergency protocols. One of the aims is to create rich simulated traffic counts. One of the
important characteristics in traffic flow is to incorporate traffic burstiness, see for example Naja
(2012). Vehicles tend to cluster together, creating traffic congestion. The aim of this work is
to construct a model to simulate traffic flow that mimics real life conditions and subsequently
perform basic descriptive statistics.

3. Model Description

This section introduces some pieces of counting process theory needed in what follows. The
general nonhomogeneous Poisson process N̂ = {N̂(t) : t ≥ 0} with intensity function λ(t) has
the following properties:

(a) The process starts at 0 with N̂ = 0.

(b) The process has independent increments, i.e. for any ti , i = 0, ..., n , the increments
N̂ti − N̂ti−1

are mutually independent.

(c) There exists a non-decreasing right continuous function m : [0,∞) → [0,∞) with
m(0) = 0 such that the increments N̂t − N̂s for 0 < s < t < ∞ have a Poisson dis-
tribution with mean value function m(t)−m(s).

The relationship between m and λ is given by

m(t) =

∫ t

0

λ(s) ds (1)

In the following, our proposed model has the intensity function λ(t) that incorporates ex-
ternal excitations. In particular, we use the set up with differing degrees of generality, adapted
from Cox and Isham (1980). To be precise, we give a full description of our model.

The Cox Model. We are interested in a counting process N(t) whose behaviour is affected by
past events. These past events contains externally excitation elements that trigger the observa-
tions in N . Our point process N(t) has a non-negative Ft− stochastic intensity function λ(t)
of the form:

λ(t) = B0(t) +
∑
j: t>Sj

C(Xj, t− sj). (2)

External events can occur at times sj and stimulate with a portion of C(Xj, t−sj): this is known
as the externally-excited part. The quantities Xj are positive random elements describing the
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amplitudes by which λ increases during event times. The quantity B0 : R+ 7→ R+ denotes the
deterministic base intensity. We write Nt := N(t) and λt := λ(t) to ease notation and {Ft}
being the history of the process and contains the list of times of events up to and including t,
i.e. {s1, s2, ..., sNt}. We define formally a point process N on R+ with the non-negative Ft
conditional random intensity

λt = a+
Jt∑
j=1

Xj e
−δ(t−sj), (3)

for t ≥ 0, where we have the following features:

• Deterministic background. The parameter a ≥ 0 is the constant mean-reverting level.
This means that B0(t) = a, which is a simplifying assumption in this paper.

• External-excitations. The random variables Xj are levels of excitation from an external
factor. They form a sequence of independent and identically distributed positive elements
with distribution function H(c), c > 0. The sequence si denotes the times at which
external events happen and it follows a homogenous Poisson process Jt of constant rate
µ > 0. Note that C(Xj, t− sj) := Xj e

−δ(t−sj). The parameter δ > 0 is the constant rate
of exponential decay that dilutes the external excitation through time.

The intuition here is that a is the background intensity that generates observations in N irre-
spective of the external events, which is assumed to be a constant. In addition to the background
rate, each event in N is affected by the external events for which their event times are captured
by sj . These event times are assumed to be following a homogenous Poisson process Jt with
rate µ. An illustrative example of these events include news and Twitter posts. The dynamics for
which the external events affect is modelled by the function C(Xj, t− sj). One commonly used
function is the exponentially-decaying function first introduced by Hawkes (1971), which has
seen numerous applications such as finance (Dassios and Zhao, 2013). The strength of which
the external excitation decays is determined by the parameter δ.

4. Model Learning

We employ a fully Bayesian inference framework to learn the model parameters. In particular,
we introduce a hybrid Markov chain Monte Carlo (MCMC) algorithm combining the features
of the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) and the
Gibbs sampler (Geman and Geman, 1984). In particular, the background intensity a and the
decay rate d are learned with MH algorithms, while the external factor intensity µ is inferred by
a Gibbs sampler.

4.1. Hybrid MCMC Learning Algorithm

We present a hybrid of MCMC algorithms that updates the parameters one at a time, either
by direct draws using Gibbs sampling or through the Metropolis Hastings (MH) algorithm. A
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hybrid algorithm combines the features of the Gibbs sampler and the MH algorithm (Robert
and Casella, 2005), thereby providing significant flexibility in designing the inference thereof
for different parameters within our model.

To see how it works, consider a two-dimensional setting as an illustration. Let θQ and θW be
parameters of interest. Assume that the posterior P(θQ | θW ) is of a known distribution, we can
perform inference directly utilizing the Gibbs sampler. On the other hand, suppose P(θQ | θW )

can only be evaluated but not directly sampled; then, we resort to the use of an MH algorithm
to update θQ given θW . For the MH step, the candidate θ′Q is drawn from R(θ′Q | θ

(k)
W , θ

(k)
W ),

which indicates that the current step can depend on the past draw of θQ. The Metropolis step
samples from R(θ′Q | θ

(k)
Q , θ

(k)
W ) which implies that we draw θ

(k+1)
Q ∼ R(θ′Q | θ

(k)
Q , θ

(k)
W ) and that

the criteria to accept or reject the proposal candidate is based on the acceptance probability,
denoted by A(θk+1

Q ):

A(θk+1
Q ) = min

(
1,

P(θ′Q | θW )R(θ
(k)
Q | θ′Q, θ

(k)
W )

P(θ
(k)
Q | θW )R(θ′Q | θ

(k)
Q , θ

(k)
W )

)
. (4)

The hybrid algorithm in this setting is as follows. Given
(
θ
(0)
Q , θ

(0)
W

)
, for k = 0, 1, ...., K,

1. Sample θ(k+1)
Q ∼ R

(
θ′Q | θ

(k)
Q , θ

(k)
W

)
and accept or reject θ(k+1)

Q based on equation (4).

2. Sample θ(k+1)
W ∼ P

(
θW | θ(k+1)

Q

)
with Gibbs sampling.

4.2. Likelihood

Likelihood, by contrast, attaches to our parameter estimates and to our framework. Take for
example, given that we have observed 9 heads in 10 flips of a coin, the likelihood that the
probability of flipping a head is 50% (i.e., that prob = 0.5) is very low. The likelihood that prob
= 0.9 is greater by a factor of almost 40. The likelihood function tells us the relative likelihoods
of the different possible values for prob. In the case of point process, with Proposition 7.3.III in
Daley and Vere-Jones (2003), the likelihood function for the events is given by

P(t, s | a, µ, δ,X) =

NT∏
i=1

λ(ti) e
−m(T )

JT∏
j=1

µ e−µT (5)

=

NT∏
i=1

(
a+

∑
j: sj<ti

Xj e
−δ(ti−sj)

)
e−m(T )µJT e−µT (6)

where the boldface symbols t, s and X represent a collection of similar variables. Here, T is
represents the maturity time, of which we stop observing the point process N . The function m
(also known as the compensator) is defined as

m(t) =

∫ t

0

λs ds (7)
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4.3. Priors

The likelihood function is, however, only one of two major blocks needed for a Bayesian cal-
culation. The other is known as the prior distribution or just prior which is necessary for
estimating parameters and for drawing probability conclusions. A prior distribution could and
should take account of what one already knows. However, when one knows very little, one
can use the Jeffreys priors, which is a non-informative belief for a parameter space and it is
proportional to the square root of the determinant of the Fisher information. This class of priors
are some of the most interesting and useful prior distributions, and they are derived from the
mathematical implications of knowing usually nothing about the parameters one wants to infer
other than their possible ranges, for example, whether if they are positive, negative, or both on
the real space R.

In our model, we assign the following prior. We first assume the priors of a, µ and δ to be
exponential with rate 1:

a ∼ Exp(1) µ ∼ Exp(1) δ ∼ Exp(1) (8)

The levels of excitation, on the other hand, follows a positive random distribution. For instance,
we could assume that they are identically and independently characterised by a Gamma distri-
bution with parameters α and β. In this case then we will write

Xj ∼ Gamma(α, β) P(Xj = x |α, β) ∝ xα−1 e−βx (9)

and since α and β are free parameters, we can assign hyperpriors to them, say, exponential
priors as follows:

α ∼ Exp(1) β ∼ Exp(1) (10)

In this case, the joint prior likelihood is formulated as

P(a, µ, δ, α, β) = P(a)P(µ)P(δ)P(α)P(β) (11)

∝ e−a · e−µ · e−δ · e−α · e−β (12)

4.4. Posterior

We now need to calculate the posterior distribution in which this quantity summarizes the cur-
rent state of knowledge about all the uncertain quantities in a Bayesian analysis setup. Analyti-
cally, the posterior density is the product of the likelihood and prior density. This is the central
quantity to be computed. Once the posterior has been computed, one can evaluate point and
interval estimates of parameters, prediction inference for future data, and probabilistic evalua-
tion of our current point process framework. With the above, the posterior (or joint posterior) is
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given by

P(a, µ, δ, α, β,X | t, s) ∝ P(t, s | a, δ,X)P(a, µ, δ, α, β) (13)

which is then used in the inference algorithm.

5. Data Collection

Before moving to discussing our experimental results, we briefly discuss the acquisition of the
data used in this paper. In particular, we perform the proposed learning algorithm on both syn-
thetic data and real traffic flow data observed in Sydney. Running the experiments on synthetic
data serves to validate the correctness of our proposed inference algorithm and provides some
insight to the underlying modelling problem. While experiments on the real world traffic data
enable us to interpret the model and connect to it.

5.1. Synthetic Data

We simulate the traffic flow for a fictitious city, assuming that its traffic flow follows the model
described in Section 3. The model parameters, chosen for ease of illustration, are: background
intensity, a = 0.5; external factor intensity, µ = 1.0; decay rate, δ = 1.0; and the level of
excitation is fixed to a constant Xj = k = 5.0. We set the maturity time to T = 24 hours for
simplicity. These parameters are called the ground truth parameters in the following sections.
The simulation algorithm, following the principle of Dassios and Zhao (2013) but adapted to
our case, is exact in the sense that no approximation is made during the data generation.
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Figure 1: (a) Intensity function and (b) histogram of the simulated traffic flow

We present a realisation of the intensity process and the event times of the traffic flow in
Figure 1(a). Here, the circles at the bottom represent the times for the external events, while
the crosses are the (simulated) observed times for the traffic flows in the city. We can see that
clusters of traffic flows are observed right after the occurrence of an external event, due to the
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increase intensity of Xj = k = 5 at the time of the external events. Recall that the intensity
is positively related to the rate of arrival of the traffic flow events. The corresponding vehicle
counts are presented in Figure 1(b), which better illustrates the clustering property.

5.2. Sydney Traffic Data

We apply our method to model the traffic flow in Sydney. In particular, as a motivating example,
we look at the vehicle flow in the Sydney on 30th March 2015. This dataset is obtained from
SCATS,1 which stands for Sydney Coordinated Adaptive Traffic System. We then process the
dataset into a time series of vehicle flow events, for which we observe a total of 12,426 event
times. We note that this time series is denominated in seconds.

For illustration, we construct a histogram of the event times in Figure 2, binned half-hourly.
From this histogram, we can see that the number of events are not uniform through time, which
is expected. High volume of vehicles are observed during peak hours, while the opposite is seen
in the period after late night and before dawn.2
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Figure 2: Histogram of the vehicle flow in Sydney in one day

On the other hand, as for the external events, we tap into the Twitter feed. We employ the
Traffic Watch3 framework (Nguyen et al., 2016) to query for tweets that are related to Sydney
traffic condition. The workflow of the Traffic Watch is summarised by Figure 3, which details
tweets crawling and processing. The architecture admits two phases: machine learning (ML)
training process and real-time incident detection.

With large volume of tweets, our system extracts useful information by aggregating tweets
into meaningful clusters, which provides a summary of current incident types as the tweets

1http://www.scats.com.au/
2Between 11pm and 5am.
3http://adait.io/project-twatch.html
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emerge over time. To give an example, we present a snapshot of our system output in Figure 4.
Here, crash events are detected from tweets and clustered based on the incident types, they are
accompanied by an extract of the tweets for a detailed investigation or merely for perusal. For
simplicity, however, we will use only the tweets’ event time in the following modelling exercise.

Figure 3: Traffic Watch workflow on Twitter data

Figure 4: A snapshot of the Traffic Watch analysis

6. Experiment Results

Here, we discuss the experiments on both the synthetic data and the Sydney traffic flow data.

6.1. Assessing Modelling Accuracy on Synthetic Data

By running the proposed inference algorithm on the synthetic data described in Section 5.1,
we are able to test the validity of the proposed MCMC method. Since the levels of excitation
are fixed to Xj = k = 5, we assume it is known and learn the other parameters a, µ, and δ.
These parameters are initialised to 0.5 and are updated with the inference algorithm described
in Section 4. We perform the inference algorithm for 500 iterations and with a burn-in of 100.
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The learned parameters are found to be

â = 0.47 µ̂ = 0.86 δ̂ = 0.97 (14)

which are very closed to the ground truth parameters of a = 0.5, µ = 1.0, and δ = 1.0. The
calibrated parameters agree to within 0.15 units from the true parameters. This deviation can be
explained by the randomness (of the random variables) in simulation.

To assess the convergence of the inference algorithm, we inspect the plot of model log-
likelihood4 against the number of iterations, which is presented in Figure 5. Since the initial
parameters are quite close to the ground truth, we can see that the loglikelihood converges
quickly and fluctuates around −60. This indicates that the inference mechanism performs well
and as intended.
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Figure 5: Loglikelihood trace during the learning of the model parameters

6.2. Modelling Sydney Traffic Flow

After testing our proposed inference method, we move on to the modelling of Sydney traffic
data described in Section 5.2. In this dataset, since the levels of excitation Xj are not known,
for simplicity, we will assume that they follow an exponential distribution with rate parameter β.
This is equivalent to setting the shape parameter α = 1 above:

Xj ∼ Exp(β) ≡ Gamma(1, β) (15)

4Note that the loglikelihood shown here is unnormalised and is subject to a constant shift in value.
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Following the experiment setting from the synthetic experiment, we initialise all parameters
to 0.5 and perform the inference algorithm for 500 iterations with burn-in of 100. The learned
parameters are

â = 0.1440 µ̂ = 0.0005 δ̂ = 3.0334 β̂ = 3.4104 (16)

Here, we present an interpretation of the learned model. Without any external influence, we
expect that, on average, there will be 0.144 vehicle per second passing through a given point in
Sydney, this translates to about 9 vehicles per minute. Additionally, we find that each external
event generates an expected number of

E[X]

δ̂
=

1

β̂ · δ̂
= 0.09666 (17)

vehicles in its life time.
Finally, we present a diagnostic test to assess the convergence of our learning algorithm

on this dataset. Since the final learned parameters are close to their initialisation, we expect
the model loglikelihood to improve during learning. We present the full loglikelihood plot vs.
training iterations in Figure 6. As we can see, the loglikelihood quickly improves during training
and has converged within the burn-in period. To inspect further, we plot only the loglikelihood
after the burn-in period in Figure 7, which fluctuates around −3.688 × 104. We note that the
loglikelihood here is much smaller than that of the synthetic experiment, which is due to using
a much larger dataset.
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Figure 6: Full loglikelihood trace during the learning
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Figure 7: After burn-in loglikelihood trace during learning

7. Conclusion and Future Research

We have introduced a flexible point process framework in the modelling of traffic flow. This
model can capture clustering, thereby mimicking traffic congestion. In addition, the rate at
which vehicles passes through a particular stretch of road is influenced by the information of
external events. We have also successfully developed a combined algorithm which uses both the
Gibbs and MH algorithms that provides significant flexibility during inference. It is worthwhile
investigating the potential usefulness of combining our model with the ongoing research in
traffic demand modelling, which is a main course of current research initiated by Ben-Akiva
and Lerman (1985).

As avenue for future investigation, we are interested in employing more kinds of data from
Traffic Watch to improve traffic flow modelling. One particular interesting piece of information
is the textual data accompanying tweets. Perhaps topic models from the machine learning com-
munity can be applied (for example, see Lim et al., 2016). Additionally, to improve modelling,
it would be interesting to extend the proposed model to induce correlation and stochasticity in
the levels of excitation, such as using the stochastic processes in Lee et al. (2016).
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