
A Full derivation

A.1 Optimizing objective

We want to choose S∗k that maximizes the objective:

Exp-n-Call@k(Sk,q) = E[Rk ≥ n|s1, . . . , sk,q]

By taking a greedy approach, we select s∗k given S∗k−1:

s∗k =argmax
sk

E[Rk ≥ n|S∗k−1, sk,q]

=argmax
sk

P (Rk ≥ n|S∗k−1, sk,q) (1)

=argmax
sk

∑
Tk

(
P (t|q)P (tk|sk)

(k−1∏
i=1

P (ti|s∗i )
)
· P (Rk ≥ n|Tk, S

∗
k−1, sk,q)

)
(2)

=argmax
sk

∑
Tk

P (t|q)P (tk|sk)
(k−1∏
i=1

P (ti|s∗i )
)
·
(
P (rk≥0|Rk−1≥n, tk, t)︸ ︷︷ ︸

1

P (Rk−1≥n|Tk-1)

+ P (rk = 1|Rk−1 =n−1, tk, t)P (Rk−1 =n−1|Tk-1)
)

(3)

=argmax
sk

(∑
Tk-1

[∑
tk

P (tk|sk)︸ ︷︷ ︸
1

]
P (t|q)

(k−1∏
i=1

P (ti|s∗i )
)
P (Rk−1 ≥n|Tk-1)+

∑
Tk-1

[∑
tk

P (tk|sk)P (rk = 1|tk, t)
]
P (t|q)

(k−1∏
i=1

P (ti|s∗i )
)
P (Rk−1 =n−1|Tk-1)

)

=argmax
sk

∑
t

P (t|q)P (tk = t|sk)

[ ∑
t1,...,tk−1

P (Rk−1 =n−1|Tk-1)

k−1∏
i=1

P (ti|s∗i )

]
(4)

=argmax
sk

∑
t

P (t|q)P (tk = t|sk)P (Rk−1 =n−1|S∗k−1) (5)

Note:
(1) Since (Rk ≥ n) can only be zero or one in probability.
(2) Marginalize out Tk.
(3) Split (Rk ≥ n) into two disjoint events (rk≥0, Rk−1≥n), (rk =1, Rk−1 =n−1), conditioned on Rk−1.
(4) Drop the first line as it does not involve sk and has no influence in determining s∗k.
Note that

∑
tk
P (tk|sk)P (rk=1|tk, t) =

∑
tk
P (tk|sk)I[tk = t] = P (tk=t|sk), where t is implicitly conditioned and is not

explicitly shown here.
(5) This objective is recursively defined.

By similar reasoning, the probability needed in (5) is recursively defined as

P (Rk = n|Sk, t) =



n ≥ 1, k > 1 :
(
1−P (tk = t|sk)

)
P (Rk−1 =n|Sk−1, t)

+P (tk = t|sk)P (Rk−1 =n−1|Sk−1, t)

n = 0, k > 1 :
(
1−P (tk = t|sk)

)
P (Rk−1 =0|Sk−1, t)

n = 1, k = 1 : P (t1 = t|s1)

n = 0, k = 1 : 1− P (t1 = t|s1)

n > k : 0

For expected n-call@k where n≤k/2, by unrolling its recursive definition in (5), the explicit objective is

s∗k =argmax
sk

∑
t

(
P (t|q)P (tk = t|sk)

∑
j1,...,jn−1

∏
l∈{j1,...,jn−1}

P (tl = t|s∗l )

k−1∏
i=1
i/∈{j1,...,jn−1}

(
1− P (ti = t|s∗i )

))
(6)

where j1, . . . , jn−1 ∈ {1, . . . , k − 1} satisfy that ji < ji+1 (i.e., an ordered permutation of n− 1 result set indices).

Similarly, for expected n-call@k where n>k/2, the explicit objective is

s∗k =argmax
sk

∑
t

(
P (t|q)P (tk = t|sk)

∑
jn,...,jk−1

∏
l∈{jn,...,jk−1}

(
1− P (tl = t|s∗l )

) k−1∏
i=1
i/∈{jn,...,jk−1}

P (ti = t|s∗i )

)
(7)

where jn, . . . , jk−1 ∈ {1, . . . , k − 1} satisfy that ji < ji+1 (i.e., an ordered permutation of k − n result set indices).
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A.2 Relation to MMR: expected n-call@k when n > k/2

Assuming that ∀i P (ti|si) ∈ {0, 1} and P (t|q) ∈ {0, 1}. It is possible to write

∏
l∈{jn,...,jk−1}

(
1−P (tl = t|s∗l )

)
= 1−

(
1−

∏
l∈{jn,...,jk−1}

(
1− P (tl = t|s∗l )

))
= 1−

(
max

l∈{jn,...,jk−1}
P (tl = t|s∗l )

)
This allows us to rewrite (7)

s∗k = argmax
sk

∑
t

(
P (t|q)P (tk = t|sk)

∑
jn,...,jk−1

k−1∏
i=1
i/∈{jn,...,jk−1}

P (ti = t|s∗i )

−P (t|q)P (tk = t|sk)
∑

jn,...,jk−1

k−1∏
i=1
i/∈{jn,...,jk−1}

P (ti = t|s∗i ) max
l∈{jn,...,jk−1}

P (tl = t|s∗l )

)
(8)

Assuming m relevant documents are already selected in the k − 1 collection, then the top term (specifically
∏

i) is
non-zero

(
m

n−1
)

times. For the bottom term, it takes n − 1 relevant documents to satisfy its
∏

i, and one additional

relevant document to satisfy the maxl making it non-zero
(
m
n

)
times. Factoring out the max element from the bottom

and pushing the
∑

t inwards (all legal due to the {0, 1} subtopic probability assumption), (8) becomes

s∗k =argmax
sk

[∑
t

P (t|q)P (tk = t|sk)

(
m

n− 1

)]
−

∑
t

P (t|q)P (tk = t|sk)

(
m

n

)
max

si∈S∗
k−1

P (ti = t|si)︸ ︷︷ ︸
1


=argmax

sk

(
m

n− 1

)∑
t

P (t|q)P (tk = t|sk)︸ ︷︷ ︸
relevance: Sim1(sk,q)

−
(
m

n

)
max

si∈S∗
k−1

∑
t

P (ti = t|si)P (t|q)P (tk = t|sk)︸ ︷︷ ︸
diversity: Sim2(sk,si,q)

(9)

=argmax
sk

n

m+1
Sim1(sk,q)− m−n+1

m + 1
max

si∈S∗
k−1

Sim2(sk, si,q) (10)

Note:
(9) We can rearrange ”

∑
t P (t|q) maxsi · · · ” as ”maxsi

∑
t P (t|q) · · · ” since the

∑
t P (t|q) ’selects’ the only t for which

P (t|q) = 1.
(10) Normalize by dividing the equation by

(
m

n−1
)

+
(
m
n

)
=
(
m+1
n

)
(Pascal’s rule).

The result is the same as the case where n ≤ k/2.

The reason that we do not remove the max term in (9) is that this allows us to compare the objective with MMR
directly. Also, leaving the max term suggests an approximate form for the case where the subtopic probabilities are
non-deterministic (not strictly 0 or 1), and approaches (9) as the probabilities become more deterministic.

In practice, under the greedy approach of the expected n-call@k in selecting S∗k , we expect that there are already
n relevant documents chosen in the set S∗k−1 = {s∗1, . . . , s∗k−1} (where n << k). In expectation, m = n and hence the
optimizing objective can be thought to be

s∗k =argmax
sk

n

n+1
Sim1(sk,q)− 1

n + 1
max

si∈S∗
k−1

Sim2(sk, si,q) (11)

From (11), it is simple to see that the diversification level decreases with n.
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B Additional derivation

B.1 Alternative derivation for expected 2-call@k

s∗k =argmax
sk

E
[
Rk ≥ 2

∣∣S∗k−1, sk,q]
=argmax

sk

E

[
(r1 = 1 ∧ r2 = 1) ∨ (r1 = 0 ∧ r2 = 1 ∧ r3 = 1) ∨ (r1 = 1 ∧ r2 = 0 ∧ r3 = 1)∨

(r1 = 0 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 1) ∨ (r1 = 0 ∧ r2 = 1 ∧ r3 = 0 ∧ r4 = 1)∨
(r1 = 1 ∧ r2 = 0 ∧ r3 = 0 ∧ r4 = 1) ∨ · · · ∨
(r1 = 0 ∧ · · · ∧ rk−2 = 0 ∧ rk−1 = 1 ∧ rk = 1)∨
(r1 = 0 ∧ · · · ∧ rk−3 = 0 ∧ rk−2 = 1 ∧ rk−1 = 0 ∧ rk = 1) ∨ · · · ∨

(r1 = 1 ∧ r2 = 0 ∧ · · · ∧ rk−1 = 0 ∧ rk = 1)

∣∣∣∣∣S∗k−1, sk,q
]

=argmax
sk

E

[
(r1 = 1 ∧ r2 = 1) ∨ (r1 = 0 ∧ r2 = 1 ∧ r3 = 1) ∨ (r1 = 1 ∧ r2 = 0 ∧ r3 = 1)∨

(r1 = 0 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 1) ∨ (r1 = 0 ∧ r2 = 1 ∧ r3 = 0 ∧ r4 = 1)∨
(r1 = 1 ∧ r2 = 0 ∧ r3 = 0 ∧ r4 = 1) ∨ · · · ∨

k−1∨
j=1

rk = 1 ∧
k−1∧
i=1
i 6=j

ri = 0 ∧ rj = 1


∣∣∣∣∣∣∣S∗k−1, sk,q


=argmax

sk

k−1∑
j=1

P

rk = 1 ∧
k−1∧
i=1
i 6=j

ri = 0 ∧ rj = 1

∣∣∣∣∣∣∣S∗k−1, sk,q


=argmax
sk

k−1∑
j=1

 ∑
t1,...,tk,t

P (t|q)P (tk|sk)I[tk = t]P (tj |s∗j )I[tj = t]

k−1∏
i=1
i 6=j

P (ti|s∗i )I[ti 6= t]


=argmax

sk

∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j )

k−1∏
i=1
i6=j

(1− P (ti = t|s∗i ))


Assuming that ∀i P (ti|si) ∈ {0, 1} and P (t|q) ∈ {0, 1}, the objective becomes:

s∗k =argmax
sk

∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j )

k−1∏
i=1
i 6=j

(1− P (ti = t|s∗i ))


=argmax

sk

∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j )

1−

1−
k−1∏
i=1
i 6=j

(1− P (ti = t|s∗i ))





=argmax
sk

∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j
)
− P

(
tj = t|s∗j

)1−
k−1∏
i=1
i 6=j

(1− P (ti = t|s∗i ))




=argmax
sk

∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j )

−
∑
t

P (t|q)P (tk = t|sk)

k−1∑
j=1

P (tj = t|s∗j ) max
i∈[1,k−1]

i 6=j

P (ti = t|s∗i )

Noting that this is of the same form as (8), albeit much simpler.
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