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ABSTRACT
It has been previously noted that optimization of the n-
call@k relevance objective (i.e., a set-based objective that is
1 if at least n documents in a set of k are relevant, otherwise
0) encourages more result set diversification for smaller n,
but this statement has never been formally quantified. In
this work, we explicitly derive the mathematical relationship
between expected n-call@k and the relevance vs. diversity
trade-off — through fortuitous cancellations in the resulting
combinatorial optimization, we show the trade-off is a simple
and intuitive function of n (notably independent of the result
set size k ≥ n), where diversification increases as n → 1.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models
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1. RELEVANCE VS. DIVERSITY
Subtopic retrieval — “the task of finding documents that

cover as many different subtopics of a general topic as pos-
sible” [5] — is a motivating case for diverse retrieval. One of
the most popular result set diversification methods is Maxi-
mal Marginal Relevance (MMR) [1]. Formally, given an item
set D (e.g., a set of documents) where retrieved items are
denoted as si ∈ D, we aim to select an optimal subset of
items S∗k ⊂ D (where |S∗k | = k and k < |D|) relevant to a
given query q (e.g., query terms) with some level of diversity
among the items in S∗k . MMR builds S∗k in a greedy manner
by choosing the next optimal selection s∗k given the set of
k − 1 optimal selections S∗k−1 = {s∗1, . . . , s∗k−1} (recursively
defining S∗k = S∗k−1 ∪ {s∗k} with S∗0 = ∅) as follows:

s∗k = argmax
sk∈D\S∗

k−1

[λ(Sim1(q, sk))−(1−λ) max
si∈S∗

k−1

Sim2(si, sk)].

(1)
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Figure 1: Latent subtopic binary relevance model.

Here, λ ∈ [0, 1], metric Sim1 measures query-item relevance,
and metric Sim2 measures the similarity between two items.

Presently, little is formally known about how a particular
selection of λ relates to the overall set-based relevance objec-
tive being optimized. However, it has been previously noted
that the n-call@k set-based relevance metric (which is 1 if
at least n documents in a set of k are relevant, otherwise 0)
encourages diversity as n → 1 [2, 4]. Indeed, Sanner et al.
[3] have shown that optimizing expected n-call@k for n = 1
corresponds to λ = 0.5 — we extend this derivation to show
that λ = n

n+1
for arbitrary n ≥ 1 (independent of result set

size k ≥ n). This result precisely formalizes a relationship
between n-call@k and the relevance vs. diversity trade-off.

2. RELEVANCE MODEL AND OBJECTIVE
We review the probabilistic subtopic model of binary rele-

vance from [3] shown as a directed graphical model in Fig-
ure 1. Shaded nodes represent observed variables, unshaded
nodes are latent. Observed variables are the query terms q
and selected items si (where for 1 ≤ i ≤ k, si ∈ D). For the
subtopic variables, let T be a discrete subtopic set. Then
ti ∈ T represent subtopics for respective si and t ∈ T repre-
sents a subtopic for query q. The ri are {0, 1} variables that
indicate if respective selected items si are relevant (ri = 1).

The conditional probability tables (CPTs) are as follows:
P (ti|si) and P (t|q) respectively represent the subtopic dis-
tribution for item si and query q. For the ri CPTs, using
I[·] as a {0, 1} indicator function (1 if · is true), item si is
deemed relevant iff its subtopic ti matches query subtopic t:

P (ri = 1|t, ti) = I[ti = t]

We next define Rk =
Pk

i=1 ri, where Rk is the number of
relevant items from the first k selections. Reading Rk ≥ n
as I[Rk ≥ n], we express the expected n-call@k objective as

Exp-n-Call@k(Sk,q) = E[Rk ≥ n|s1, . . . , sk,q].



3. MAIN DERIVATION AND RESULT
Taking MMR’s greedy approach, we select sk given S∗k−1:

1

s∗k =argmax
sk

E[Rk ≥ n|S∗k−1, sk,q]

=argmax
sk

P (Rk ≥ n|S∗k−1, sk,q)

This query can be evaluated w.r.t. our latent subtopic binary
relevance model in Figure 1 as follows, where we marginalize
out all non-query, non-evidence variables Tk and define Tk =
{t, t1, . . . , tk} and

P
Tk
◦ =

P
t

P
t1
· · ·Ptk

◦:

=argmax
sk

X
Tk

“
P (t|q) P (tk|sk)

k−1Y
i=1

P (ti|s∗i )
· P (Rk ≥ n|Tk, S∗k−1, sk,q)

”

We split Rk ≥ n into two disjoint (additive) events (rk≥
0,Rk−1≥n), (rk=1,Rk−1=n−1) where all ri are D-separated:

=argmax
sk

X
Tk

P (t|q) P (tk|sk)

k−1Y
i=1

P (ti|s∗i )

·
“
P (rk≥0|Rk−1≥n, tk, t)| {z }

1

P (Rk−1≥n|Tk-1)

+ P (rk = 1|Rk−1 =n−1, tk, t)P (Rk−1 =n−1|Tk-1)
”

We distribute initial terms over the summands noting thatP
tk

P (tk|sk)P (rk=1|tk, t)=
P

tk
P (tk|sk)I[tk=t]=P (tk=t|sk):

=argmax
sk

 X
Tk-1

»X
tk

P (tk|sk)

| {z }
1

–
P (Rk−1≥n|Tk-1)P (t|q)

k−1Y
i=1

P (ti|s∗i )+

X
t

P (t|q)P (tk = t|sk)
X

t1,...,tk−1

P (Rk−1 =n−1|Tk-1)

k−1Y
i=1

P (ti|s∗i )
!

Next we proceed to drop the first summand since it is not a
function of sk (i.e., it has no influence in determining s∗k):

=argmax
sk

X
t

P (t|q)P (tk = t|sk)P (Rk−1=n−1|S∗k−1) (2)

By similar reasoning, we can derive that the last probability
needed in (2) is recursively defined as P (Rk = n|Sk, t) =
8
>>>>><
>>>>>:

n ≥ 1, k > 1 :
`
1−P (tk = t|sk)

´
P (Rk−1 =n|Sk−1, t)

+P (tk = t|sk)P (Rk−1 =n−1|Sk−1, t)

n = 0, k > 1 :
`
1−P (tk = t|sk)

´
P (Rk−1 =0|Sk−1, t)

n = 1, k = 1 : P (t1 = t|s1)

n = 0, k = 1 : 1− P (t1 = t|s1)

We can now rewrite (2) by unrolling its recursive definition.
For expected n-call@k where n ≤ k/2 (a symmetrical result
holds for k/2 < n ≤ k), the explicit unrolled objective is

s∗k =argmax
sk

X
t

 
P (t|q) P (tk = t|sk)·

X
j1,...,jn−1

Y

l∈{j1,...,jn−1}
P (tl = t|s∗l )

k−1Y
i=1
i/∈{j1,...,jn−1}

`
1− P (ti = t|s∗i )

´
!

(3)

where j1, . . . , jn−1 ∈ {1, . . . , k − 1} satisfy that ji < ji+1

(i.e., an ordered permutation of n− 1 result set indices).

1We present a derivation summary; A full derivation may
be found in an online appendix at the authors’ web pages.

If we assume each document covers a single subtopic of the
query (e.g., a subtopic represents an intent of an ambiguous
query) then we can assume that ∀i P (ti|si) ∈ {0, 1} and
P (t|q) ∈ {0, 1}. This allows us to convert a

Q
to a max

k−1Y
i=1
i/∈{j1,...,jn−1}

`
1−P (ti = t|s∗i )

´
= 1−

 
1−

k−1Y
i=1
i/∈{j1,...,jn−1}

`
1− P (ti = t|s∗i )

´
!

= 1−
“

max
i∈[1,k−1]
i/∈{j1,...,jn−1}

P (ti = t|s∗i )
”

and by substituting this into (3) and distributing, we get

= argmax
sk

X
t

 
P (t|q)P (tk = t|sk)

X
j1,...,jn−1

Y

l∈{j1,...,jn−1}
P (tl = t|s∗l )

−P (t|q)P (tk = t|sk)
X

j1,...,jn−1

Y

l∈{j1,...,jn−1}
P (tl = t|s∗l )max

i∈[1,k−1]
i/∈{j1,...,jn−1}

P (ti = t|s∗i )
!

.

Assuming m selected documents S∗k−1 are relevant then the
top term (specifically

Q
l) is non-zero

`
m

n−1

´
times. For the

bottom term, it takes n− 1 relevant S∗k−1 to satisfy its
Q

l,
and one additional relevant document to satisfy the maxi

making it non-zero
`

m
n

´
times. Factoring out the max ele-

ment from the bottom and pushing the
P

t inwards (all legal
due to the {0, 1} subtopic probability assumption) we get

=argmax
sk

 
m

n− 1

!X
t

P (t|q)P (tk = t|sk)

| {z }
relevance: Sim1(sk,q)

−
 

m

n

!
max

si∈S∗
k−1

X
t

P (ti = t|si)P (t|q)P (tk = t|sk)

| {z }
diversity: Sim2(sk,si,q)

.

From here we can normalize by
`

m
n−1

´
+
`

m
n

´
=
`

m+1
n

´
(Pas-

cal’s rule), leading to fortuitous cancellations and the result:

=argmax
sk

n

m+1
Sim1(sk,q)− m−n+1

m + 1
max

si∈S∗
k−1

Sim2(sk, si,q)

Comparing to MMR in (1), we can clearly see that λ = n
m+1

.
Assuming m ≈ n since Exp-n-Call@k optimizes for the case
where n relevant documents are selected, then λ = n

n+1
.
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