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Background

I Poisson distributions
I Commonly used to model the number of times an event occurs in an

interval of time or space.
I For example, the number of vehicles passing an intersection in 30

minutes.

Figure: (left) Probability mass functions (right) Observed histogram

I Additive Property: If X ∼ Poi(λ1),Y ∼ Poi(λ2), then

X + Y ∼ Poi(λ1 + λ2)
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Background

I (Homogeneous) Poisson point process
I It is a stochastic process that keep track of the running counts of an

event over time (and space).
I For example, the number of vehicles passing an intersection is an

evolution of counts with time.

I The number of events between two time points follow a Poisson
distribution.

I Call the evolution of counts as the counting process N(t) and the
times of an event happening the event times ti .
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Background

I Properties of Poisson process
I The counting process starts at zero: N(t = 0) = 0.
I Parameterised by the expected number of events per unit time, e.g.
λ = 3 vehicles per minute. This parameter is sometimes known as
intensity measure.

I The counting process at time t follows Poi(λt). (number of events
observed until time t)

I The difference (also called increment) in counting processes

N(t)− N(s) ∼ Poi(λ(t − s)) t > s

I The increments for non-overlapping time points are independent.

N(t4)− N(t3) ⊥ N(t2)− N(t1) t4 > t3 > t2 > t1

I The increments are time homogeneous, they depend on time
difference (t − s) rather than the time (t) itself.

I Superposition property: If N(t) ∼ PP(λ1) and M(t) ∼ PP(λ2), then

N(t) + M(t) ∼ PP(λ1 + λ2)
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Background

I Extension: Inhomogeneous Poisson process
I The homogeneous Poisson process assume constant intensity λ

which might not be realistic, e.g., we expect lower intensity during
midnight. (see blue histogram below)

I Instead of constant intensity, allow the intensity to vary with time:
λ(t) is a function of time.

I Examples:
I Piecewise linear;
I Piecewise polynomial;
I Cyclical functions such as sine curve.

Figure: (left) Observed histogram (right) Generated data for IPP
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Background

I Properties of inhomogeneous Poisson process
I The counting process starts at zero: N(t = 0) = 0.
I Parameterised intensity measure λ(t) which is a function of time.
I The counting process at time t follows Poi(

∫ t

0
λ(u) du).

I The difference (also called increment) in counting processes

N(t)− N(s) ∼ Poi

(∫ t

s

λ(u) du

)
t > s

I The increments for non-overlapping time points are independent.

N(t4)− N(t3) ⊥ N(t2)− N(t1) t4 > t3 > t2 > t1

I The increments are no longer time homogeneous, they depend on
the time (t).

I Superposition property still holds: If N(t) ∼ IPP(λ1(t)) and
M(t) ∼ IPP(λ2(t)), then

N(t) + M(t) ∼ IPP(λ1(t) + λ2(t))
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Background

I Further extension: Intensity modulated by random processes
I The intensity measure λ(t) for counting process N(t) can be a

random function, i.e., it is a function of random processes.
I Example:

I Shot noise Cox process: intensity modulated by another counting
process.

λ(t) =

M(T )∑
i=1: t>si

αe−δ(t−si )

I Log Gaussian Cox process: intensity modulated by exponent of a
Gaussian process.

λ(t) = exp(X (t)), X (t) ∼ GP

I Hawkes process: intensity modulated by its own counting process –
this gives self-exciting property! Simple univariate Hawkes process
with exponential kernel:

λ(t) = µ(t) +

N(T )∑
i=1: t>ti

αe−δ(t−ti )

I We will focus on Hawkes processes.
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Hawkes Processes

I Hawkes process is a point process in which an occurrence of an
event triggers future events (self-excitation)

I Our formulation of Hawkes (univariate):

λ(t) = µ(t) +

N(T )∑
i=1: t>ti

αe−δ(t−ti )

I Decaying background intensity to capture ‘edge effect’.

µ(t) = µ+ Y (0) e−δ×t

I Random excitations:

α→ Yi

Yi ∼ i.i.d. Gamma

I Terminology:
I ti i = 1, . . . ,N(T ) is a sequence of non-negative random variables

such that ti < ti+1, known as event times.
I ∆i = ti − ti−1 is called the inter-arrival time.
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Illustration of Hawkes Intensity

λ(t)

Note the variation of heights

Z10 = 1

Z20 = 1

Z32 = 1
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Y5

Y6

Figure: A sample path of the intensity function λ(·).
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Multivariate Hawkes

I captures multiple event types for which the events mutually excite
one another.

I Our formulation (Bivariate Hawkes):

λ1(t) = µ1 + Y 1
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+
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where λ1(t) and λ2(t) are the intensity functions for process 1 and
2, respectively.

I Note that the decay parameters δ are different for each process.

11 / 27



Illustration of Multivariate Hawkes
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Figure: A sample of a three-dimensional Hawkes processes. The left plot
graphs the realised intensity function λm(t) for the Hawkes processes, while the
right plot shows the corresponding counting processes Nm(t). Each increase in
the counting processes corresponds to a jump in each of the intensity functions.
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Recap

I N i (t) is the number of arrivals or events of the process by time t,
superscript i denote which process.

I The intensity function λ(t) is related to the expected number of
events:

E[N(t)] =

∫ t

0

λ(u) du

I Poisson process: λ(t) = const., arrivals of events are independent
with each other, and follow the same constant rate.

I Inhomogeneous Poisson process: λ(t) is a deterministic function of
time, arrivals of events depend on the intensity function λ(t).

I Hawkes process: λ(t) is a function of its own counting process N(t)
(becomes a random function). An occurrence of an event causes
‘jump’ in the intensity, thereby excites more future events.

I Any question so far?
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Detour: Stationarity of Hawkes process

I Due to self-excitation property, a Hawkes process is only stable
(stationary) when certain condition is satisfied.

I For univariate Hawkes, the condition is

E[Yi ] < δ

I The intensity process λ(t) explodes if this condition is not satisfied:
I When δ > E[Yi ], the added intensity from an event fails to decay

fast enough.
I Causing chain reactions: intensity increases → more future events →

further increases in intensity...

I Slightly more complicated condition for multivariate Hawkes (see
paper for details).

I We present a theoretical result on the expected stationary intensities
for our Hawkes formulation.
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How to simulate a Poisson process?

I First method: simulate the counting process
I Recall that

N(t)− N(s) ∼ Poi(λ(t − s)) t > s

I So we can simulate an evolution of N(t) sequentially by choosing
t = 0.01, 0.02, 0.03 and so on.

I Called grid-based method.
I But this is not exact (an event may arrives at time t = 0.02345).

I Second method: simulate the event times
I It is possible to show that the inter-arrival time ∆i between two

events follow an exponential distribution.

∆i = ti − ti−1 ∼ Exp(λ)

I Once knowing ∆i we can reconstruct ti and N(t):

N(t) =
∑
i

1ti<t

(number of events seen before time t)
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How to simulate a Hawkes process?

I First method from Poisson process is difficult.
I No nice formulation

N(t)− N(s) is not Poisson t > s

I Second method: simulate the event times
I Possible to derive the cumulative distribution function (cdf) of

inter-arrival times:

I Issue: cdf cannot be inverted for direct sampling.
I Ozaki (1979) used numerical method to sample – no longer exact.
I Dassios and Zhao (2013) recast the Hawkes process using ODE and

sample the event times exactly – λ(t) needs to be Markovian.
I Our method: Extend DZ for Hawkes with dissimilar decays which is

not Markovian – we use superposition property and first order
statistics.

I Other methods:
I Ogata’s thinning method.
I Cluster based method.
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Going high level – Superposition property

I Bivariate Hawkes as example, recall intensity functions:

λ1(t) = µ1 + Y 1
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I We can treat each process as superposition of simpler processes.
I In this case, process 1 is a superposition of:

I a homogeneous Poisson process with intensity µ1;
I two inhomogeneous Poisson processes with decaying intensities;
I a self-excitation part; and
I a shot noise Cox part.

I Sampling the inter-arrival times for each simpler process is easy and
exact (cdf can be inverted).
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Going high level – First order statistics

I Denote FA(x) as the cdf for a random variable A.

I If we have (
1− FA(x)

)
=
(
1− FB(x)

)(
1− FC (x)

)
then, A = min{B,C} is a first order statistics of B and C .

I Same principle holds for more than two random variables.

I We can show that the inter-arrival time for a Hawkes process is a
first order statistics of the inter-arrival time of those simpler
processes (details in paper).

I What this means?
I We can sample the inter-arrival time of the simpler processes, and

then take their minimum as the inter-arrival time for our Hawkes.
I Do not need to resort to approximation or satisfy Markovian

constraint.

I Additional caching techniques make our sampler efficient.
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Simulation Statistics

I We compare the simulated statistics against theoretical expectations:
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Figure 2: Plot of simulated mean intensities vs the theoretical stationary average intensities
of the three-dimensional Hawkes processes. The simulated means are represented
by the curvy lines while the stationary average intensities are shown by the hor-
izontal lines. From this plot, we can see that the mean intensities converge to
their theoretical stationary value. They are almost indistinguishable for t > 5, see
Table 1 for the difference. [make it straight dotted lines for long term stationary]

Table 1: Comparison of simulated mean intensities against their theoretical expectation on
ten fixed time t. The simulated mean intensities are computed by averaging the
simulated intensities over one million sample paths. The percentage differences of
the simulated means against the theoretical expectations are minuscule, validating
the correctness of the proposed simulation algorithm. [Maybe move to join Figure
2 for space]

Process m = 1 Process m = 2 Process m = 3

Time Sim. Expt. %Diff. Sim. Expt. %Diff. Sim. Expt. %Diff.

5.0 9.507 9.499 0.088 6.850 6.838 0.169 4.886 4.878 0.154
6.0 9.499 9.499 0.003 6.844 6.838 0.078 4.882 4.878 0.070
7.0 9.494 9.499 −0.052 6.834 6.838 −0.055 4.875 4.878 −0.060
8.0 9.507 9.499 0.087 6.840 6.838 0.020 4.880 4.878 0.042
9.0 9.501 9.499 0.025 6.837 6.838 −0.017 4.880 4.878 0.037

10.0 9.497 9.499 −0.017 6.837 6.838 −0.019 4.876 4.878 −0.049

In addition, through the simulation of univariate Hawkes processes, we perform com-
parison against the inverse sampling method of Ozaki (1979) and the cluster based method
of Brix and Kendall (2002). Since implementation on these methods were not readily avail-
able, we implement them based on the algorithms outlined in the respective articles, thus
might not be fully optimised, however, the same can be said to the implementation of our
own sampler. The simulation settings (subscripts m and i suppressed) are µ = 0.5, Y0 = 0,

12

Figure: Plot of simulated mean intensities vs the theoretical stationary
average intensities of the three-dimensional Hawkes processes.

I This verifies that our algorithm and implementation is correct.

21 / 27



Speed comparison

I We compare our simulation algorithm with several existing ones:
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Bayesian Inference

I Fully Gibbs sampling achieved by
I Auxiliary variables augmentation – we introduce additional

parameters called branching structures that allow decoupling of
existing parameters.

I Adaptive rejection sampling (ARS) – for variables that do not have
known posterior distributions, we show conditions for which the
posteriors are log-concave, which facilitates efficient sampling via
ARS.

I On simulated data, we demonstrate that the parameters learned
using Bayesian inference is accurate and superior to MLE:
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Real world application – Modelling Dark Networks

I What are Dark-nets?
I Online ‘anonymous’ market places hidden from public access.
I Enables buying and selling ‘anything’, e.g., drugs, stolen credit cards.
I Discussion forum: Open, un-moderated, e.g., “How to avoid law”.

I Why do we care?
I Facilitate over $20b of $330b (pa) narcotic trade and nastier stuff.
I Provide actionable intelligence & historical info.
I Manual law enforcement processes: reactive and do not scale.

Figure: BlackBank site: fraudulent credit card for sale
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Real world application – Modelling Dark Networks

I We model the forum posts on drugs as Hawkes process:
I Keywords: Meth and Cannabis
I Arrival of an event is the forum posting with relevant keywords.
I We assume the events are mutually-exciting – people replying,

update existing posts, etc.
I Results:

I Learned parameters:

µ̂1 = 0.6063 , Ŷ 1
1 (0) = 0.7202 , Ŷ 2

1 (0) = 0.7329 ,

µ̂2 = 0.0930 , Ŷ 1
2 (0) = 0.5166 , Ŷ 2

2 (0) = 0.5149 ,

α̂1
1 = 0.0599 , α̂2

1 = 0.1487 , β̂1
1 = 0.0760 , β̂2

1 = 1.4939 ,

α̂1
2 = 0.3894 , α̂2

2 = 0.1147 , β̂1
2 = 1.9399 , β̂2

2 = 1.4197 .

I The background intensity for the cannabis’ forum (µ1) is much higher
as a result of the observation of higher posts on the cannabis forum.

I αi
m and β i

m describe the distribution of the levels of excitation.
I In this case, the expected levels of excitation are given as

Ê[Y 1
1,·] = 0.7878 , Ê[Y 1

2,·] = 0.0995 ,

Ê[Y 2
1,·] = 0.2007 , Ê[Y 2

2,·] = 0.0808 .
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Summary

I Theoretical result on expected stationary intensities

I Simulation of multivariate Hawkes with superposition theory and
first order statistics

I Bayesian inference on Hawkes with auxiliary variable augmentation
and adaptive rejection sampling

I Application on modelling Dark-nets forum data
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