Simulation and Calibration of a Fully Bayesian Marked Multidimensional Hawkes Process with Dissimilar Decays

Kar Wai Lim*[†], Young Lee[†], Leif Hanlen[†], Hongbiao Zhao[‡]

*Australian National University †Data61/CSIRO ‡Xiamen University

¹Presented in Monash University.

Outline

INTRODUCTION ON HAWKES PROCESSES

SIMULATION OF HAWKES PROCESSES

Assessments on Simulations

BAYESIAN INFERENCE FOR HAWKES

- Poisson distributions
 - Commonly used to model the number of times an event occurs in an interval of time or space.
 - For example, the number of vehicles passing an intersection in 30 minutes.

FIGURE: (left) Probability mass functions (right) Observed histogram

Additive Property: If X ~ Poi(λ₁), Y ~ Poi(λ₂), then

$$X + Y \sim \operatorname{Poi}(\lambda_1 + \lambda_2)$$

- (Homogeneous) Poisson point process
 - It is a stochastic process that keep track of the running counts of an event over time (and space).
 - For example, the number of vehicles passing an intersection is an evolution of counts with time.

- The number of events between two time points follow a Poisson distribution.
- Call the evolution of counts as the counting process N(t) and the times of an event happening the event times t_i .

Properties of Poisson process

- The counting process starts at zero: N(t = 0) = 0.
- Parameterised by the expected number of events per unit time, e.g. λ = 3 vehicles per minute. This parameter is sometimes known as intensity measure.
- The counting process at time t follows Poi(λt). (number of events observed until time t)
- The difference (also called increment) in counting processes

$$N(t) - N(s) \sim \operatorname{Poi}(\lambda(t-s))$$
 $t > s$

> The increments for non-overlapping time points are independent.

$$N(t_4) - N(t_3) \perp N(t_2) - N(t_1)$$
 $t_4 > t_3 > t_2 > t_1$

- ► The increments are time homogeneous, they depend on time difference (t s) rather than the time (t) itself.
- Superposition property: If $N(t) \sim PP(\lambda_1)$ and $M(t) \sim PP(\lambda_2)$, then

$$N(t) + M(t) \sim PP(\lambda_1 + \lambda_2)$$

- Extension: Inhomogeneous Poisson process
 - The homogeneous Poisson process assume constant intensity which might not be realistic, e.g., we expect lower intensity during midnight. (see blue histogram below)
 - Instead of constant intensity, allow the intensity to vary with time: $\lambda(t)$ is a function of time.
 - Examples:
 - Piecewise linear;
 - Piecewise polynomial;
 - Cyclical functions such as sine curve.

FIGURE: (left) Observed histogram (right) Generated data for IPP

Properties of inhomogeneous Poisson process

- The counting process starts at zero: N(t = 0) = 0.
- Parameterised intensity measure $\lambda(t)$ which is a function of time.
- The counting process at time t follows $\operatorname{Poi}(\int_0^t \lambda(u) \, du)$.
- The difference (also called increment) in counting processes

$$N(t) - N(s) \sim \operatorname{Poi}\left(\int_{s}^{t} \lambda(u) \, du\right) \qquad t > s$$

> The increments for non-overlapping time points are independent.

$$N(t_4) - N(t_3) \perp N(t_2) - N(t_1)$$
 $t_4 > t_3 > t_2 > t_1$

- The increments are no longer time homogeneous, they depend on the time (t).
- Superposition property still holds: If $N(t) \sim IPP(\lambda_1(t))$ and $M(t) \sim IPP(\lambda_2(t))$, then

$$N(t) + M(t) \sim \operatorname{IPP}(\lambda_1(t) + \lambda_2(t))$$

- Further extension: Intensity modulated by random processes
 - The intensity measure λ(t) for counting process N(t) can be a random function, i.e., it is a function of random processes.
 - Example:
 - Shot noise Cox process: intensity modulated by another counting process.

$$\lambda(t) = \sum_{i=1: t>s_i}^{M(T)} \alpha e^{-\delta(t-s_i)}$$

 Log Gaussian Cox process: intensity modulated by exponent of a Gaussian process.

$$\lambda(t) = \exp(X(t)), \qquad X(t) \sim GP$$

Hawkes process: intensity modulated by its own counting process – this gives self-exciting property! Simple univariate Hawkes process with exponential kernel:

$$\lambda(t) = \mu(t) + \sum_{i=1: t>t_i}^{N(T)} \alpha e^{-\delta(t-t_i)}$$

We will focus on Hawkes processes.

Hawkes Processes

- Hawkes process is a point process in which an occurrence of an event triggers future events (self-excitation)
- Our formulation of Hawkes (univariate):

$$\lambda(t) = \mu(t) + \sum_{i=1:t>t_i}^{N(T)} \alpha e^{-\delta(t-t_i)}$$

Decaying background intensity to capture 'edge effect'.

$$\mu(t) = \mu + Y(0) e^{-\delta \times t}$$

Random excitations:

$$lpha
ightarrow Y_i$$

 $Y_i \sim \text{i.i.d. Gamma}$

Terminology:

- ► t_i i = 1,..., N(T) is a sequence of non-negative random variables such that t_i < t_{i+1}, known as event times.
- $\Delta_i = t_i t_{i-1}$ is called the inter-arrival time.

Illustration of Hawkes Intensity

FIGURE: A sample path of the intensity function $\lambda(\cdot)$.

Multivariate Hawkes

- captures multiple event types for which the events mutually excite one another.
- Our formulation (Bivariate Hawkes):

$$\begin{split} \lambda_1(t) &= \mu_1 + Y_1^1(0) \, e^{-\delta_1^1 t} + Y_1^2(0) \, e^{-\delta_1^2 t} \\ &+ \sum_{j=1: \, t \ge t_j^1}^{N^1(t)} Y_{1,j}^1 \, e^{-\delta_1^1 t} + \sum_{j=1: \, t \ge t_j^2}^{N^2(t)} Y_{1,j}^2 \, e^{-\delta_1^2 t} \\ \lambda_2(t) &= \mu_2 + Y_2^1(0) \, e^{-\delta_2^1 t} + Y_2^2(0) \, e^{-\delta_2^2 t} \\ &+ \sum_{j=1: \, t \ge t_j^1}^{N^1(t)} Y_{2,j}^1 \, e^{-\delta_2^1 t} + \sum_{j=1: \, t \ge t_j^2}^{N^2(t)} Y_{2,j}^2 \, e^{-\delta_2^2 t} \end{split}$$

where $\lambda_1(t)$ and $\lambda_2(t)$ are the intensity functions for process 1 and 2, respectively.

• Note that the decay parameters δ are different for each process.

Illustration of Multivariate Hawkes

FIGURE: A sample of a three-dimensional Hawkes processes. The left plot graphs the realised intensity function $\lambda_m(t)$ for the Hawkes processes, while the right plot shows the corresponding counting processes $N^m(t)$. Each increase in the counting processes corresponds to a jump in each of the intensity functions.

Recap

- Nⁱ(t) is the number of arrivals or events of the process by time t, superscript i denote which process.
- ► The intensity function λ(t) is related to the expected number of events:

$$\mathbb{E}[N(t)] = \int_0^t \lambda(u) \, du$$

- Poisson process: λ(t) = const., arrivals of events are independent with each other, and follow the same constant rate.
- Inhomogeneous Poisson process: λ(t) is a deterministic function of time, arrivals of events depend on the intensity function λ(t).
- Hawkes process: \u03c0(t) is a function of its own counting process N(t) (becomes a random function). An occurrence of an event causes 'jump' in the intensity, thereby excites more future events.
- Any question so far?

Detour: Stationarity of Hawkes process

- Due to self-excitation property, a Hawkes process is only stable (stationary) when certain condition is satisfied.
- ► For univariate Hawkes, the condition is

 $\mathbb{E}[Y_i] < \delta$

- The intensity process $\lambda(t)$ explodes if this condition is not satisfied:
 - When $\delta > \mathbb{E}[Y_i]$, the added intensity from an event fails to decay fast enough.
 - \blacktriangleright Causing chain reactions: intensity increases \rightarrow more future events \rightarrow further increases in intensity...
- Slightly more complicated condition for multivariate Hawkes (see paper for details).
- We present a theoretical result on the expected stationary intensities for our Hawkes formulation.

Outline

INTRODUCTION ON HAWKES PROCESSES

SIMULATION OF HAWKES PROCESSES

Assessments on Simulations

BAYESIAN INFERENCE FOR HAWKES

How to simulate a Poisson process?

First method: simulate the counting process

Recall that

$$N(t) - N(s) \sim \operatorname{Poi}(\lambda(t-s))$$
 $t > s$

- So we can simulate an evolution of N(t) sequentially by choosing t = 0.01, 0.02, 0.03 and so on.
- Called grid-based method.
- But this is not exact (an event may arrives at time t = 0.02345).
- Second method: simulate the event times
 - It is possible to show that the inter-arrival time Δ_i between two events follow an exponential distribution.

$$\Delta_i = t_i - t_{i-1} \sim \operatorname{Exp}(\lambda)$$

• Once knowing Δ_i we can reconstruct t_i and N(t):

$$N(t) = \sum_{i} \mathbb{1}_{t_i < t}$$

(number of events seen before time *t*)

How to simulate a Hawkes process?

- First method from Poisson process is difficult.
 - No nice formulation

$$N(t) - N(s)$$
 is not Poisson $t > s$

- Second method: simulate the event times
 - Possible to derive the cumulative distribution function (cdf) of inter-arrival times:

$$\begin{split} \log \left\{ 1 - F(u \mid t_1, \cdots, t_k, \theta) \right\} &= -\int_{t_k}^u \mathcal{A}(t \mid t_1, \cdots, t_k, \theta) dt \\ &= -\int_{t_k}^u \left\{ \mu + \sum_{i=1}^k g(t - t_i \mid \theta) \right\} dt \end{split}$$

- Issue: cdf cannot be inverted for direct sampling.
 - Ozaki (1979) used numerical method to sample no longer exact.
 - Dassios and Zhao (2013) recast the Hawkes process using ODE and sample the event times exactly – λ(t) needs to be Markovian.
 - Our method: Extend DZ for Hawkes with dissimilar decays which is not Markovian – we use superposition property and first order statistics.
- Other methods:
 - Ogata's thinning method.
 - Cluster based method.

Going high level – Superposition property

• Bivariate Hawkes as example, recall intensity functions:

$$\begin{split} \lambda_1(t) &= \mu_1 + Y_1^1(0) \, e^{-\delta_1^1 t} + Y_1^2(0) \, e^{-\delta_1^2 t} \\ &+ \sum_{j=1: \, t \ge t_j^1}^{N^1(t)} Y_{1,j}^1 \, e^{-\delta_1^1 t} + \sum_{j=1: \, t \ge t_j^2}^{N^2(t)} Y_{1,j}^2 \, e^{-\delta_1^2 t} \\ \lambda_2(t) &= \mu_2 + Y_2^1(0) \, e^{-\delta_2^1 t} + Y_2^2(0) \, e^{-\delta_2^2 t} \\ &+ \sum_{j=1: \, t \ge t_j^1}^{N^1(t)} Y_{2,j}^1 \, e^{-\delta_2^1 t} + \sum_{j=1: \, t \ge t_j^2}^{N^2(t)} Y_{2,j}^2 \, e^{-\delta_2^2 t} \end{split}$$

- We can treat each process as superposition of simpler processes.
- In this case, process 1 is a superposition of:
 - a homogeneous Poisson process with intensity μ_1 ;
 - two inhomogeneous Poisson processes with decaying intensities;
 - a self-excitation part; and
 - a shot noise Cox part.
- Sampling the inter-arrival times for each simpler process is easy and exact (cdf can be inverted).

Going high level - First order statistics

- Denote $F_A(x)$ as the cdf for a random variable A.
- If we have

$$(1 - F_A(x)) = (1 - F_B(x))(1 - F_C(x))$$

then, $A = \min\{B, C\}$ is a first order statistics of B and C.

- Same principle holds for more than two random variables.
- We can show that the inter-arrival time for a Hawkes process is a first order statistics of the inter-arrival time of those simpler processes (details in paper).
- What this means?
 - We can sample the inter-arrival time of the simpler processes, and then take their minimum as the inter-arrival time for our Hawkes.
 - Do not need to resort to approximation or satisfy Markovian constraint.
- Additional caching techniques make our sampler efficient.

Outline

INTRODUCTION ON HAWKES PROCESSES

SIMULATION OF HAWKES PROCESSES

Assessments on Simulations

BAYESIAN INFERENCE FOR HAWKES

Simulation Statistics

▶ We compare the simulated statistics against theoretical expectations:

FIGURE: Plot of simulated mean intensities vs the theoretical stationary average intensities of the three-dimensional Hawkes processes.

> This verifies that our algorithm and implementation is correct.

Speed comparison

▶ We compare our simulation algorithm with several existing ones:

SAMPLER	Events	StDev	$\mathrm{Time}/\mathrm{Sim}[\mathrm{s}]$	$\mathrm{StDev}\left[s\right]$	$\mathrm{Time}/\mathrm{Event}\left[\mu s\right]$
Multivariate $(M = 50)$					
ZAATOUR (2014)	12503	566	4.24	0.29	339
Our sampler	12492	530	2.47	0.14	198
Univariate $(M = 1)$					
Оzaki (1979)	249995	2505	32.73	0.69	131
BRIX & KENDALL (2002)	249926	2544	14.31	1.09	57
Our sampler	249891	2533	3.12	0.26	13

*Our sampler is equivalent to Dassios and Zhao (2013) for univariate Hawkes, thus not compared.

Outline

INTRODUCTION ON HAWKES PROCESSES

SIMULATION OF HAWKES PROCESSES

Assessments on Simulations

BAYESIAN INFERENCE FOR HAWKES

Bayesian Inference

- Fully Gibbs sampling achieved by
 - Auxiliary variables augmentation we introduce additional parameters called branching structures that allow decoupling of existing parameters.
 - Adaptive rejection sampling (ARS) for variables that do not have known posterior distributions, we show conditions for which the posteriors are log-concave, which facilitates efficient sampling via ARS.
- On simulated data, we demonstrate that the parameters learned using Bayesian inference is accurate and superior to MLE:

		Process $m = 1$			Process $m = 2$		
NAME	VAR.	True	MLE	MCMC	TRUE	MLE	MCMC
BACKGROUND INTENSITY	μ_m	2.0000	2.0078	1.9026	1.0000	1.0051	0.8555
Decay rates	$\begin{array}{c} \delta_m^1 \\ \delta_m^2 \end{array}$	$6.0000 \\ 2.0000$	$\begin{array}{c} 6.5367 \\ 2.6464 \end{array}$	$\begin{array}{c} 6.0978 \\ 2.4649 \end{array}$	$3.0000 \\ 5.0000$	$\begin{array}{c} 4.0671 \\ 5.4443 \end{array}$	$3.0790 \\ 5.2633$
Shape parameters	$\begin{array}{c} \alpha_m^1 \\ \alpha_m^2 \end{array}$	$4.0000 \\ 2.0000$	$\begin{array}{c} 4.0171 \\ 2.0135 \end{array}$	$4.0293 \\ 2.0100$	$1.0000 \\ 6.0000$	$1.0103 \\ 6.0907$	$1.0076 \\ 6.0638$
RATE PARAMETERS	$\begin{array}{c} \beta_m^1 \\ \beta_m^2 \end{array}$	$2.0000 \\ 5.0000$	$1.9996 \\ 4.9969$	$2.0193 \\ 5.0426$	$4.0000 \\ 3.0000$	$4.0262 \\ 3.0223$	$4.0407 \\ 3.0351$
Mean square error	MSE	0.0000	0.1009	0.0340	0.0000	0.1922	0.0148

Real world application – Modelling Dark Networks

- What are Dark-nets?
 - Online 'anonymous' market places hidden from public access.
 - Enables buying and selling 'anything', e.g., drugs, stolen credit cards.
 - Discussion forum: Open, un-moderated, e.g., "How to avoid law".
- Why do we care?
 - ► Facilitate over \$20b of \$330b (pa) narcotic trade and nastier stuff.
 - Provide actionable intelligence & historical info.
 - Manual law enforcement processes: reactive and do not scale.

 $\ensuremath{\mathbf{Figure:}}$ BlackBank site: fraudulent credit card for sale

Real world application – Modelling Dark Networks

- We model the forum posts on drugs as Hawkes process:
 - Keywords: Meth and Cannabis
 - Arrival of an event is the forum posting with relevant keywords.
 - We assume the events are mutually-exciting people replying, update existing posts, etc.
- ► Results:
 - Learned parameters:

$$\begin{split} \hat{\mu}_1 &= 0.6063 \;, \quad \hat{Y}_1^1(0) = 0.7202 \;, \quad \hat{Y}_1^2(0) = 0.7329 \;, \\ \hat{\mu}_2 &= 0.0930 \;, \quad \hat{Y}_2^1(0) = 0.5166 \;, \quad \hat{Y}_2^2(0) = 0.5149 \;, \\ \hat{\alpha}_1^1 &= 0.0599 \;, \quad \hat{\alpha}_1^2 = 0.1487 \;, \qquad \hat{\beta}_1^1 = 0.0760 \;, \qquad \hat{\beta}_1^2 = 1.4939 \;, \\ \hat{\alpha}_2^1 &= 0.3894 \;, \quad \hat{\alpha}_2^2 = 0.1147 \;, \qquad \hat{\beta}_2^1 = 1.9399 \;, \qquad \hat{\beta}_2^2 = 1.4197 \;. \end{split}$$

- The background intensity for the cannabis' forum (µ1) is much higher as a result of the observation of higher posts on the cannabis forum.
- α_m^i and β_m^i describe the distribution of the levels of excitation.
- In this case, the expected levels of excitation are given as

$$\begin{split} \hat{\mathbb{E}}[Y_{1,\cdot}^1] &= 0.7878 , \qquad \qquad \hat{\mathbb{E}}[Y_{2,\cdot}^1] &= 0.0995 , \\ \hat{\mathbb{E}}[Y_{1,\cdot}^2] &= 0.2007 , \qquad \qquad \hat{\mathbb{E}}[Y_{2,\cdot}^2] &= 0.0808 . \end{split}$$

Summary

- ▶ Theoretical result on expected stationary intensities
- Simulation of multivariate Hawkes with superposition theory and first order statistics
- Bayesian inference on Hawkes with auxiliary variable augmentation and adaptive rejection sampling
- Application on modelling Dark-nets forum data