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Background

I Poisson distributions
I Commonly used to model the number of times an event occurs in an

interval of time or space.
I Textbook example: the number of cars passing an intersection in half

an hour.

Figure: (left) Probability mass functions (right) Observed histogram

I Additive Property: If X ∼ Poi(λ1),Y ∼ Poi(λ2), then

X + Y ∼ Poi(λ1 + λ2)
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Background

I (Homogeneous) Poisson process
I It is a stochastic process that keep track of the running counts of an

event over time (and space).
I For example, the number of cars passing an intersection is an

evolution of counts with time:

I Call the evolution of counts as the counting process N(t) and the
times of an event happening the event times ti .
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Background

I Properties of Poisson process

I The counting process starts at zero: N(t = 0) = 0.

I Parameterised by the expected number of events per unit time, e.g.
λ = 3 vehicles per minute.

I The counting process N(t) at time t follows Poi(λt). (number of
events observed until time t)

I The difference (also called increment) in counting processes

N(t)− N(s) ∼ Poi(λ(t − s)) t > s

I Superposition property: If N(t) ∼ PP(λ1), M(t) ∼ PP(λ2), then

N(t) + M(t) ∼ PP(λ1 + λ2)
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Background

I What if some events are more frequent at certain times?

I More cars during peak hours!

I Instead of constant intensity, allow the intensity to vary with time:
λ(t) becomes a function of time.
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Background

I Extension: Inhomogeneous Poisson process

I Example λ(t):
I Piecewise linear;
I Piecewise polynomial;
I Cyclical functions such as sine curve.

Figure: Generated data
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Background

I Properties of inhomogeneous Poisson process (IPP)

I The counting process starts at zero: N(t = 0) = 0.

I Parameterised by intensity function λ(t).

I The counting process at time t follows Poi(
∫ t

0
λ(u) du).

I The difference (also called increment) in counting processes

N(t)− N(s) ∼ Poi

(∫ t

s

λ(u) du

)
t > s

I Superposition property still holds: If N(t) ∼ IPP(λ1(t)),
M(t) ∼ IPP(λ2(t)), then

N(t) + M(t) ∼ IPP(λ1(t) + λ2(t))
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Hawkes Processes

I Hawkes process is a point process in which an occurrence of an
event triggers future events (self-excitation).

I Our formulation of Hawkes (univariate):

λ(t) = µ(t) +

N(T )∑
i=1: t>ti

Yie
−δ(t−ti )

I Decaying background intensity:

µ(t) = k + Y (0) e−δ×t

I Random self excitations:

Yi ∼ i.i.d. Gamma

I Terminology:
I ti , i = 1, . . . ,N(T ) is a sequence of non-negative random variables

such that ti < ti+1 , known as event times.
I ∆i = ti − ti−1 is called the inter-arrival time.
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Multivariate Hawkes

I Captures multiple event types for which the events mutually excite
one another.

I Our formulation (Bivariate Hawkes):

λ1(t) = µ1(t) +

N1(t)∑
j=1: t≥t1

j

Y 1
1,j e

−δ1
1t +

N2(t)∑
j=1: t≥t2

j

Y 2
1,j e

−δ2
1t

λ2(t) = µ2(t) +

N1(t)∑
j=1: t≥t1

j

Y 1
2,j e

−δ1
2t +

N2(t)∑
j=1: t≥t2

j

Y 2
2,j e

−δ2
2t

where λ1(t) and λ2(t) are the intensity functions for events 1 and 2,
respectively.

I Note that the decay parameters δ are different for each process.
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Illustration of Multivariate Hawkes
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Detour: Stationarity of Hawkes process

I Due to self-excitation property, a Hawkes process is only stable
(stationary) when certain condition is satisfied.

I The intensity process λ(t) explodes if this condition is not satisfied:
I Causing chain reactions: intensity increases → more future events →

further increases in intensity...

I We present a theoretical result on the expected stationary intensities
for our Hawkes formulation. [Extension of Hawkes (1971) and Bacry
et al. (2015)]

12 / 19



Outline

Introduction on Hawkes Processes

Simulation of Hawkes Processes

Bayesian Inference for Hawkes

13 / 19



Simulation of Hawkes Processes

I There are three categories of simulation methods.

I 1. Inverse Sampling (Ozaki, 1979)

I Derives cdf (cumulative distribution function) of inter-arrival times,
then performs inverse sampling.

I Cdf cannot be inverted directly so approximation is needed.

I 2. Thinning (Lewis and Shedler, 1979; Ogata, 1981)

I Simulate samples from a Poisson process and then thin the samples.
I Akin to a rejection sampler.

I 3. Cluster method (Brix & Kendall, 2002; Møller & Rasmussen, 2005)

I Recast Hawkes using a Poisson cluster representation.
I Each observed event generates an IPP.
I Superposition of all of them forms a Hawkes process.

I Notable mention: exact sampler of Dassios & Zhao (2013)
I Performs inverse sampling without approximation by decomposing a

variable into two — need to satisfy a Markovian constraint.

I Our method: exploits superposition theory and first order statistics
for efficient sampling.
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Our Simulation Method in One Slide

I Illustration with bivariate Hawkes

λ1(t) = µ1(t) +

N1(t)∑
j=1: t≥t1

j

Y 1
1,j e

−δ1
1 t +

N2(t)∑
j=1: t≥t2

j

Y 2
1,j e

−δ2
1 t

λ2(t) = µ2(t) +

N1(t)∑
j=1: t≥t1

j

Y 1
2,j e

−δ1
2 t +

N2(t)∑
j=1: t≥t2

j

Y 2
2,j e

−δ2
2 t

I A Hawkes with intensity λ1(t) is a superposition of IPP (with
intensities µ1 etc).

I Inter-arrival times (ai , bi , ci ...) for these IPP can be sampled easily.

I We show that the inter-arrival time ∆i for a Hawkes process is a
first order statistics of these inter-arrival times:

∆i = min{ai , bi , ci ...}

I No need to resort to approximation or satisfy Markovian constraint.

2Note: efficient caching can be performed if the Hawkes is Markov.
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Simulation Statistics

I We compare the simulated statistics against theoretical expectations
(over 1 million simulation paths):
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Figure 2: Plot of simulated mean intensities vs the theoretical stationary average intensities
of the three-dimensional Hawkes processes. The simulated means are represented
by the curvy lines while the stationary average intensities are shown by the hor-
izontal lines. From this plot, we can see that the mean intensities converge to
their theoretical stationary value. They are almost indistinguishable for t > 5, see
Table 1 for the difference. [make it straight dotted lines for long term stationary]

Table 1: Comparison of simulated mean intensities against their theoretical expectation on
ten fixed time t. The simulated mean intensities are computed by averaging the
simulated intensities over one million sample paths. The percentage differences of
the simulated means against the theoretical expectations are minuscule, validating
the correctness of the proposed simulation algorithm. [Maybe move to join Figure
2 for space]

Process m = 1 Process m = 2 Process m = 3

Time Sim. Expt. %Diff. Sim. Expt. %Diff. Sim. Expt. %Diff.

5.0 9.507 9.499 0.088 6.850 6.838 0.169 4.886 4.878 0.154
6.0 9.499 9.499 0.003 6.844 6.838 0.078 4.882 4.878 0.070
7.0 9.494 9.499 −0.052 6.834 6.838 −0.055 4.875 4.878 −0.060
8.0 9.507 9.499 0.087 6.840 6.838 0.020 4.880 4.878 0.042
9.0 9.501 9.499 0.025 6.837 6.838 −0.017 4.880 4.878 0.037

10.0 9.497 9.499 −0.017 6.837 6.838 −0.019 4.876 4.878 −0.049

In addition, through the simulation of univariate Hawkes processes, we perform com-
parison against the inverse sampling method of Ozaki (1979) and the cluster based method
of Brix and Kendall (2002). Since implementation on these methods were not readily avail-
able, we implement them based on the algorithms outlined in the respective articles, thus
might not be fully optimised, however, the same can be said to the implementation of our
own sampler. The simulation settings (subscripts m and i suppressed) are µ = 0.5, Y0 = 0,

12

Figure: Plot of simulated mean intensities vs the theoretical stationary
average intensities of the three-dimensional Hawkes processes.

I Verifies that our algorithm and implementation is correct.

I See paper for other results.
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Bayesian Inference in One Slide

I Fully Gibbs sampling achieved by
I Auxiliary variables augmentation – introduce additional parameters

called branching structures – allow decoupling of existing parameters.
I Adaptive rejection sampling (ARS) – for variables that do not have

known posterior distributions, we show conditions for which the
posteriors are log-concave, and sample via ARS.

I On simulated data, we demonstrate that the parameters learned
using Bayesian inference is accurate and superior to MLE:

I See paper for application on modelling Dark Networks.
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Summary

I Theoretical result on expected stationary intensities

I Simulation of multivariate Hawkes with superposition theory and
first order statistics

I Bayesian inference on Hawkes with auxiliary variable augmentation
and adaptive rejection sampling
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