SIMULATION AND CALIBRATION OF A FULLY BAYESIAN MARKED MULTIDIMENSIONAL HAWKES PROCESS WITH DISSIMILAR DECAYS

Kar Wai Lim*†, Young Lee[†], Leif Hanlen[†], Hongbiao Zhao[‡]

*Australian National University

†Data61/CSIRO

#Xiamen University

¹Proceedings of the 8th Asian Conference in Machine Learning (ACML) 2016

Talk Outline

Introduction on Hawkes Processes

SIMULATION OF HAWKES PROCESSES

BAYESIAN INFERENCE FOR HAWKES

- ▶ Poisson distributions
 - Commonly used to model the number of times an event occurs in an interval of time or space.
 - Textbook example: the number of cars passing an intersection in half an hour.

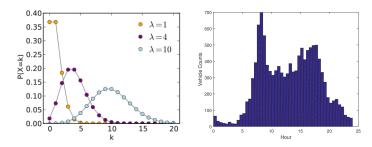
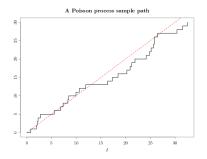


FIGURE: (left) Probability mass functions (right) Observed histogram

Additive Property: If $X \sim \operatorname{Poi}(\lambda_1)$, $Y \sim \operatorname{Poi}(\lambda_2)$, then $X + Y \sim \operatorname{Poi}(\lambda_1 + \lambda_2)$

- ► (Homogeneous) Poisson process
 - ▶ It is a stochastic process that keep track of the running counts of an event over time (and space).
 - ► For example, the number of cars passing an intersection is an evolution of counts with time:



▶ Call the evolution of counts as the counting process N(t) and the times of an event happening the event times t_i .

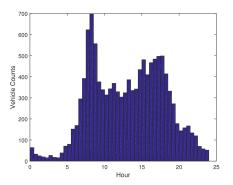
- ► Properties of Poisson process
 - ▶ The counting process starts at zero: N(t = 0) = 0.
 - Parameterised by the expected number of events per unit time, e.g. $\lambda=3$ vehicles per minute.
 - ▶ The counting process N(t) at time t follows $Poi(\lambda t)$. (number of events observed until time t)
 - ► The difference (also called increment) in counting processes

$$N(t) - N(s) \sim \operatorname{Poi}(\lambda(t-s))$$
 $t > s$

▶ Superposition property: If $N(t) \sim PP(\lambda_1)$, $M(t) \sim PP(\lambda_2)$, then

$$N(t) + M(t) \sim PP(\lambda_1 + \lambda_2)$$

▶ What if some events are more frequent at certain times?



- ► More cars during peak hours!
- Instead of constant intensity, allow the intensity to vary with time: $\lambda(t)$ becomes a function of time.

- ► Extension: Inhomogeneous Poisson process
 - ▶ Example $\lambda(t)$:
 - Piecewise linear;
 - Piecewise polynomial;
 - Cyclical functions such as sine curve.

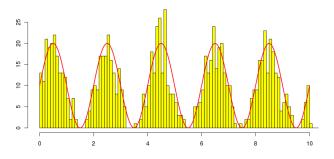


FIGURE: Generated data

- Properties of inhomogeneous Poisson process (IPP)
 - ▶ The counting process starts at zero: N(t = 0) = 0.
 - ▶ Parameterised by intensity function $\lambda(t)$.
 - ▶ The counting process at time t follows $Poi(\int_0^t \lambda(u) du)$.
 - ► The difference (also called increment) in counting processes

$$N(t) - N(s) \sim \operatorname{Poi}\left(\int_{s}^{t} \lambda(u) du\right)$$
 $t > s$

▶ Superposition property still holds: If $N(t) \sim \text{IPP}(\lambda_1(t))$, $M(t) \sim \text{IPP}(\lambda_2(t))$, then

$$N(t) + M(t) \sim IPP(\lambda_1(t) + \lambda_2(t))$$

Hawkes Processes

- Hawkes process is a point process in which an occurrence of an event triggers future events (self-excitation).
- Our formulation of Hawkes (univariate):

$$\lambda(t) = \mu(t) + \sum_{i=1: t>t_i}^{N(T)} Y_i e^{-\delta(t-t_i)}$$

Decaying background intensity:

$$\mu(t) = k + Y(0) e^{-\delta \times t}$$

Random self excitations:

$$Y_i \sim \text{i.i.d. Gamma}$$

- ► Terminology:
 - ▶ t_i , i = 1, ..., N(T) is a sequence of non-negative random variables such that $t_i < t_{i+1}$, known as event times.
 - ▶ $\Delta_i = t_i t_{i-1}$ is called the inter-arrival time.

Multivariate Hawkes

- Captures multiple event types for which the events mutually excite one another.
- ▶ Our formulation (Bivariate Hawkes):

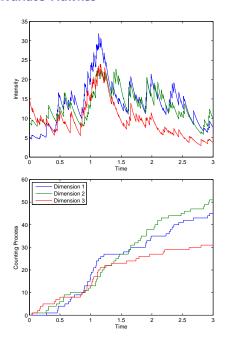
$$\lambda_{1}(t) = \mu_{1}(t) + \sum_{j=1: t \geq t_{j}^{1}}^{N^{1}(t)} Y_{1,j}^{1} e^{-\delta_{1}^{1}t} + \sum_{j=1: t \geq t_{j}^{2}}^{N^{2}(t)} Y_{1,j}^{2} e^{-\delta_{1}^{2}t}$$

$$\lambda_{2}(t) = \mu_{2}(t) + \sum_{j=1: t \geq t_{j}^{1}}^{N^{1}(t)} Y_{2,j}^{1} e^{-\delta_{2}^{1}t} + \sum_{j=1: t \geq t_{j}^{2}}^{N^{2}(t)} Y_{2,j}^{2} e^{-\delta_{2}^{2}t}$$

where $\lambda_1(t)$ and $\lambda_2(t)$ are the intensity functions for events 1 and 2, respectively.

▶ Note that the decay parameters δ are different for each process.

Illustration of Multivariate Hawkes



Detour: Stationarity of Hawkes process

- ▶ Due to self-excitation property, a Hawkes process is only stable (stationary) when certain condition is satisfied.
- ▶ The intensity process $\lambda(t)$ explodes if this condition is not satisfied:
 - Causing chain reactions: intensity increases → more future events → further increases in intensity...
- ▶ We present a theoretical result on the expected stationary intensities for our Hawkes formulation. [Extension of Hawkes (1971) and Bacry et al. (2015)]

Outline

Introduction on Hawkes Processes

SIMULATION OF HAWKES PROCESSES

BAYESIAN INFERENCE FOR HAWKES

Simulation of Hawkes Processes

- ▶ There are three categories of simulation methods.
- ▶ 1. Inverse Sampling (Ozaki, 1979)
 - Derives cdf (cumulative distribution function) of inter-arrival times, then performs inverse sampling.
 - ▶ Cdf cannot be inverted directly so approximation is needed.
- 2. Thinning (Lewis and Shedler, 1979; Ogata, 1981)
 - ▶ Simulate samples from a Poisson process and then *thin* the samples.
 - Akin to a rejection sampler.
- ▶ 3. Cluster method (Brix & Kendall, 2002; Møller & Rasmussen, 2005)
 - ▶ Recast Hawkes using a Poisson cluster representation.
 - ► Each observed event generates an IPP.
 - Superposition of all of them forms a Hawkes process.
- ► Notable mention: exact sampler of Dassios & Zhao (2013)
 - Performs inverse sampling without approximation by decomposing a variable into two — need to satisfy a Markovian constraint.
- ► Our method: exploits superposition theory and first order statistics for efficient sampling.

Our Simulation Method in One Slide

Illustration with bivariate Hawkes

$$\lambda_{1}(t) = \mu_{1}(t) + \sum_{j=1: t \geq t_{j}^{1}}^{N^{1}(t)} Y_{1,j}^{1} e^{-\delta_{1}^{1}t} + \sum_{j=1: t \geq t_{j}^{2}}^{N^{2}(t)} Y_{1,j}^{2} e^{-\delta_{1}^{2}t}$$

$$\lambda_{2}(t) = \mu_{2}(t) + \sum_{j=1: t \geq t_{j}^{1}}^{N^{1}(t)} Y_{2,j}^{1} e^{-\delta_{2}^{1}t} + \sum_{j=1: t \geq t_{j}^{2}}^{N^{2}(t)} Y_{2,j}^{2} e^{-\delta_{2}^{2}t}$$

- ▶ A Hawkes with intensity $\lambda_1(t)$ is a superposition of IPP (with intensities μ_1 etc).
- ▶ Inter-arrival times $(a_i, b_i, c_i...)$ for these IPP can be sampled easily.
- ▶ We show that the inter-arrival time Δ_i for a Hawkes process is a first order statistics of these inter-arrival times:

$$\Delta_i = \min\{a_i, b_i, c_i...\}$$

▶ No need to resort to approximation or satisfy Markovian constraint.

²Note: efficient caching can be performed if the Hawkes is Markov.

Simulation Statistics

▶ We compare the simulated statistics against theoretical expectations (over 1 million simulation paths):

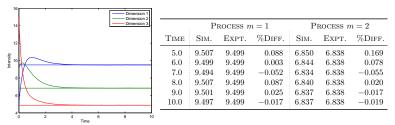


FIGURE: Plot of simulated mean intensities vs the theoretical stationary average intensities of the three-dimensional Hawkes processes.

- Verifies that our algorithm and implementation is correct.
- ▶ See paper for other results.

Outline

Introduction on Hawkes Processes

SIMULATION OF HAWKES PROCESSES

BAYESIAN INFERENCE FOR HAWKES

Bayesian Inference in One Slide

- ► Fully Gibbs sampling achieved by
 - Auxiliary variables augmentation introduce additional parameters called branching structures – allow decoupling of existing parameters.
 - Adaptive rejection sampling (ARS) for variables that do not have known posterior distributions, we show conditions for which the posteriors are log-concave, and sample via ARS.
- On simulated data, we demonstrate that the parameters learned using Bayesian inference is accurate and superior to MLE:

		PF	ROCESS m	i = 1	Process $m=2$		
Name	Var.	True	MLE	$_{\mathrm{MCMC}}$	TRUE	MLE	$_{\mathrm{MCMC}}$
Background intensity	μ_m	2.0000	2.0078	1.9026	1.0000	1.0051	0.8555
Decay rates	δ_m^1 δ_m^2	$6.0000 \\ 2.0000$	$6.5367 \\ 2.6464$	6.0978 2.4649	$3.0000 \\ 5.0000$	$4.0671 \\ 5.4443$	$3.0790 \\ 5.2633$
Shape parameters	α_m^1 α_m^2	$4.0000 \\ 2.0000$	$\begin{array}{c} 4.0171 \\ 2.0135 \end{array}$	4.0293 2.0100	$1.0000 \\ 6.0000$	1.0103 6.0907	$1.0076 \\ 6.0638$
RATE PARAMETERS	β_m^1 β_m^2	$2.0000 \\ 5.0000$	1.9996 4.9969	2.0193 5.0426	$4.0000 \\ 3.0000$	$\frac{4.0262}{3.0223}$	$4.0407 \\ 3.0351$
Mean square error	$_{ m MSE}$	0.0000	0.1009	0.0340	0.0000	0.1922	0.0148

See paper for application on modelling Dark Networks.

Summary

- ► Theoretical result on expected stationary intensities
- Simulation of multivariate Hawkes with superposition theory and first order statistics
- ► Bayesian inference on Hawkes with auxiliary variable augmentation and adaptive rejection sampling