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Background

» Poisson distributions

» Commonly used to model the number of times an event occurs in an
interval of time or space.

> Textbook example: the number of cars passing an intersection in half
an hour.
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FIGURE: (left) Probability mass functions (right) Observed histogram

» Additive Property: If X ~ Poi(A1), Y ~ Poi(\2), then
X+Y ~ POi()q + )\2)
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Background

» (Homogeneous) Poisson process
> |t is a stochastic process that keep track of the running counts of an
event over time (and space).
> For example, the number of cars passing an intersection is an
evolution of counts with time:

A Poisson process sample path

> Call the evolution of counts as the counting process N(t) and the
times of an event happening the event times t;.
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Background

» Properties of Poisson process

> The counting process starts at zero: N(t =0) =0.

> Parameterised by the expected number of events per unit time, e.g.
A = 3 vehicles per minute.

> The counting process N(t) at time t follows Poi(At). (number of
events observed until time t)

> The difference (also called increment) in counting processes

N(t) — N(s) ~ Poi(A(t — s)) t>s

> Superposition property: If N(t) ~ PP(A1), M(t) ~ PP(\2), then

N(t) + M(t) ~ PP()\l =+ )\2)
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Background

» What if some events are more frequent at certain times?
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» More cars during peak hours!

> Instead of constant intensity, allow the intensity to vary with time:

A(t) becomes a function of time.
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Background

» Extension: Inhomogeneous Poisson process

» Example A(t):
> Piecewise linear;
> Piecewise polynomial;
> Cyclical functions such as sine curve.

FI1GURE: Generated data

7/19



Background

» Properties of inhomogeneous Poisson process (IPP)

» The counting process starts at zero: N(t =0) = 0.
» Parameterised by intensity function A(t).
. . . t
» The counting process at time t follows Poi( f; A(u) du).

> The difference (also called increment) in counting processes

N(E) — N(s) ~ Poi(/st Au) du> t>s

» Superposition property still holds: If N(t) ~ IPP(A1(t)),
M(t) ~ IPP(A2(t)), then

N(t) + M(t) ~ IPP(A1(t) + A2(t))
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Hawkes Processes

» Hawkes process is a point process in which an occurrence of an
event triggers future events (self-excitation).

» Our formulation of Hawkes (univariate):

N(T)
A(t) = p(t) + Z e o(t—t)
i=1:t>t
> Decaying background intensity:
pu(t) = k+ Y (0)e %"
» Random self excitations:
Y; ~i.i.d. Gamma

» Terminology:

» t;,i=1,...,N(T) is a sequence of non-negative random variables
such that t; < tj+1, known as event times.
> A; =t — ti_1 is called the inter-arrival time.
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Multivariate Hawkes

» Captures multiple event types for which the events mutually excite
one another.

» Our formulation (Bivariate Hawkes):

N ()
_ _ 52
NETRET SR S
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_ 52
- 3 et S v e
j= 1.t2tjl j= l.tZtJ2

where A1(t) and Ap(t) are the intensity functions for events 1 and 2,

respectively.

» Note that the decay parameters ¢ are different for each process.
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Illustration of Multivariate Hawkes
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Detour:

Stationarity of Hawkes process

Due to self-excitation property, a Hawkes process is only stable
(stationary) when certain condition is satisfied.

The intensity process A(t) explodes if this condition is not satisfied:

» Causing chain reactions: intensity increases — more future events —
further increases in intensity...

We present a theoretical result on the expected stationary intensities
for our Hawkes formulation. [Extension of Hawkes (1971) and Bacry
et al. (2015)]
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Outline

SIMULATION OF HAWKES PROCESSES
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Simulation of Hawkes Processes

» There are three categories of simulation methods.
> 1. Inverse Sampling (Ozaki, 1979)
> Derives cdf (cumulative distribution function) of inter-arrival times,
then performs inverse sampling.
» Cdf cannot be inverted directly so approximation is needed.
2. Thinning (Lewis and Shedler, 1979; Ogata, 1981)
> Simulate samples from a Poisson process and then thin the samples.
> Akin to a rejection sampler.

3. Cluster method (Brix & Kendall, 2002; Mgller & Rasmussen, 2005)

v

v

> Recast Hawkes using a Poisson cluster representation.
» Each observed event generates an IPP.
> Superposition of all of them forms a Hawkes process.

v

Notable mention: exact sampler of Dassios & Zhao (2013)

» Performs inverse sampling without approximation by decomposing a
variable into two — need to satisfy a Markovian constraint.

v

Our method: exploits superposition theory and first order statistics
for efficient sampling.
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Our Simulation Method in One Slide

» lllustration with bivariate Hawkes

M(t) = gt Z Yi e Z Y2 ettt

Jj= j=1: t>1:2
Aao(t) = Yl e % 4 Y2 e %t
2 = ,u‘2 2,j € 2,j€
1 2
Jj=1 tztj Jj=1: tztj

v

A Hawkes with intensity A1(t) is a superposition of IPP (with
intensities u etc).

v

Inter-arrival times (a;, b;, ¢;...) for these IPP can be sampled easily.

v

We show that the inter-arrival time A; for a Hawkes process is a
first order statistics of these inter-arrival times:

A,‘ = min{a,-, b,', C,'.‘.}

v

2Note: efficient caching can be performed if the Hawkes is Markov.

No need to resort to approximation or satisfy Markovian constraint.
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Simulation Statistics

» We compare the simulated statistics against theoretical expectations

(over 1 million simulation paths):

—Dimension©
Dimension 2
u pmensens PROCESS m = 1 PROCESS m = 2

» TmME - SiM.  ExpT. %D1Fr.  SmM.  EXPT.  %DIFF.

|
2 | 5.0 - 9.507 9.499 0.088 6.850  6.838 0.169
i \L/\ 6.0 - 9499  9.499 0.003 6.844 6.838 0.078
. 7.0 09494 9499 —-0.052 6.834 6.838 —0.055
\ 8.0 ©9.507 9.499 0.087 6.840 6.838 0.020
s 9.0 :9.501 9.499 0.025 6.837 6.838 —0.017
10.0 - 9.497 9499  —0.017 6.837 6.838 —0.019

B
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FIGURE: Plot of simulated mean intensities vs the theoretical stationary
average intensities of the three-dimensional Hawkes processes.

» Verifies that our algorithm and implementation is correct.

» See paper for other results.
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Outline

BAYESIAN INFERENCE FOR HAWKES
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Bayesian Inference in One Slide

» Fully Gibbs sampling achieved by
> Auxiliary variables augmentation — introduce additional parameters

called branching structures — allow decoupling of existing parameters.

> Adaptive rejection sampling (ARS) — for variables that do not have
known posterior distributions, we show conditions for which the
posteriors are log-concave, and sample via ARS.
» On simulated data, we demonstrate that the parameters learned
using Bayesian inference is accurate and superior to MLE:

PROCESs m =1 PROCESS m = 2
NAME VAR. TrRUE MLE MCMC TruE MLE MCMC
BACKGROUND INTENSITY Hm 2.0000 2.0078 1.9026 1.0000 1.0051 0.8555

DECAY RATES 5t 6.0000 6.5367  6.0978  3.0000 4.0671  3.0790

) 52, 2.0000 2.6464  2.4649  5.0000 5.4443  5.2633

SHAPE PARAMETERS al, 40000 4.0171  4.0293  1.0000 1.0103  1.0076
: - i a? 2.0000 2.0135  2.0100  6.0000 6.0907  6.0638

m
Bl 2.0000 1.9996  2.0193  4.0000 4.0262  4.0407
B2, 5.0000 4.9969 5.0426  3.0000 3.0223  3.0351

MEAN SQUARE ERROR MSE 0.0000 0.1009 0.0340 0.0000 0.1922 0.0148

RATE PARAMETERS

» See paper for application on modelling Dark Networks.
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Summary

» Theoretical result on expected stationary intensities

» Simulation of multivariate Hawkes with superposition theory and
first order statistics

» Bayesian inference on Hawkes with auxiliary variable augmentation
and adaptive rejection sampling
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