

THE AUSTRALIAN NATIONAL UNIVERSITY

Twitter-Network Topic Model

A Full Bayesian Treatment for Social Network and Text Modeling

Kar Wai Lim (ANU & NICTA) Changyou Chen (ANU & NICTA) Wray Buntine (NICTA & ANU)

Contribution/Highlight

1. A fully Bayesian nonparametric topic model

Hashtags • Themes of tweets

NICTA

- that models tweets very well.
- 2. A combination of the HPDP to model text, hashtags and authors, and the GP to jointly model authors and followers network.
- 3. Significantly outperform simpler nonparametric topic models.
- 4. Ablation study shows all components are significant.
- 5. Allows additional informative inference such as authors' interest, hashtags analysis.
- 6. Leads to further applications such as author recommendation, automatic topic labeling and hashtags suggestion.

Followers Network

• Noisy labels • Might contain spam Author • Not standardized (1 author per tweet) Inappropriate usage Hashtags Hijacking: when a hashtag is used for a different purpose than the one originally intended.

Combining Text and Network

- HPDP Topic Model (Region b)
- Jointly model text, hashtags and authorship.
- A network of PDP nodes.
- Explicitly model influence of hashtags to words.
- Hashtags and words shared same tokens. (e.g. #happy is the same as happy)

Inference Algorithms

- Collapsed Gibbs Sampling
- Jointly sample topics and table multiplicity for words and hashtags in the topic model.
- Work generally with any Bayesian network of PDPs with no dynamic memory needed.
- Metropolis Hastings Algorithm

Table 2: Labeling Topics with Hashtags

	Top hashtags/words
	#finance #money #economy
T0	finance money bank marketwatch
	stocks china group
T1	#politics #iranelection #tcot
	politics iran iranelection tcot
	tlot topprog obama
T2	#music #folk #pop
	music folk monster head pop
	free indie album gratuit

– Hashtags can be good labels for topics. – Previously unseen hashtags are candidates. – Empirically, 90% of the proposed hashtags are good candidates as the topic labels.

GP Network Model (Region a)

 Jointly model the authors and the followers network with a GP random function model.

> $Q_{ij}|\nu_{1:A} \sim \mathcal{F}(\nu_i, \nu_j),$ $w_{ij}|Q_{ij} = \sigma(Q_{ij}),$ $x_{ij}|w_{ij} \sim \text{Bernoulli}(w_{ij})$

Assume the followers network is bidirected.

Inference on Authors' Interest

– Summary of topics by different authors, where the topics are obvious from the Twitter ID.

Table 3: Inference on Authors' Interest

Twitter ID Top topics represented by hashtags

- Jointly sample the author topic distribution and the followers network.
- Use Elliptical Slice Sampler for the GP.

Hyperparameters Sampling

 Sample concentration parameters with the auxiliary variable sampler (Teh, 2006).

Author Recommendation

- Recommend authors based on authors' topic distributions using the GP network model.
- Our proposed similarity kernel function is much better than the original kernel function.

 Table 4: Cosine Similarity of Author Recommendation

Recommended	1st	2nd	3rd
Original	0.00 ± 0.00	$0.05{\scriptstyle\pm0.00}$	0.06 ± 0.09
TN	$0.78{\scriptstyle \pm 0.05}$	$0.57_{\pm 0.10}$	$0.55 \scriptstyle \pm 0.17$
Not-recommended	1st	2nd	$3 \mathrm{rd}$
Original	$0.36{\scriptstyle \pm 0.05}$	$0.33{\scriptstyle \pm 0.05}$	$0.14 {\pm} 0.07$
TN	0.17 ± 0.03	$0.09{\scriptstyle \pm 0.05}$	0.10 ± 0.08

Comparison and Ablation Study

- TN topic model significantly outperform HDP-LDA and a nonparametric Author-topic model.
- Ablation study shows that all components are significant.

 Table 1: Test Perplexity & Network Likelihood

	Perplexity	Network
HDP-LDA	$358.1 {\pm} 6.7$	N/A
ATM	$302.9_{\pm 8.1}$	N/A
Random Function	N/A	$-294.6{\scriptstyle \pm 5.9}$
No Author	$243.8{\scriptstyle\pm3.4}$	N/A
No Hashtag	307.5 ± 8.3	-269.2 ± 9.5
No μ_1 node	$221.3{\pm}3.9$	$-271.2{\scriptstyle\pm5.2}$
No Word-tag link	$217.6 {\pm} 6.3$	$-275.0{\scriptstyle\pm10.1}$
No Power-law	$222.5{\scriptstyle\pm3.1}$	-280.8 ± 15.4
No Network	$218.4{\scriptstyle\pm4.0}$	N/A
TN Topic Model	208.4 ± 3.2	$-266.0_{\pm 6.9}$

* Perplexity is calculated with left to right algorithm
rather than document completion (Wallach et al., 2009).

I WICCOI ID	rop topics represented by masileage					
finance_yard	#finance #money #realestate					
ultimate_music	#music #ultimatemusiclist #mp3					
seriouslytech	#technology #web #tech					
seriouspolitics	#politics #postrank #news					
pr_science	#science #news #postrank					

- TN topic model outperform state-of-the-art tweets pooling techniques (multiple tweets combined into a single document).
- Better performance in clustering measure (Purity and NMI) and topic coherence (PMI).

 Table 5: Clustering and Topic Coherence Results

Methods	Purity			NMI Score		PMI score			
	Generic	Specific	Events	Generic	Specific	Events	Generic	Specific	Events
No pooling	0.49	0.64	0.69	0.28	0.22	0.39	-1.27	0.47	0.47
Author	0.54	0.62	0.60	0.24	0.17	0.41	0.21	0.79	0.51
Hourly	0.45	0.61	0.61	0.07	0.09	0.32	-1.31	0.87	0.22
Burstwise	0.42	0.60	0.64	0.18	0.16	0.33	0.48	0.74	0.58
Hashtag	0.54	0.68	0.71	0.28	0.23	0.42	0.78	1.43	1.07
TN	0.66	0.68	0.79	0.43	0.31	0.52	0.79	0.81	1.66

You can find the paper, poster and the supplementary material at the authors' websites. Scanning the QR code on the right leads to the author's website.

iteration

Figure 4: Training Log-likelihood vs. Iterations