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Online Reviews 

• Abundant 
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Online Reviews 

• But... 

– Fake reviews are everywhere too. 

• Consumers trust reviews more than ads. 

• 1 star increase in Yelp = 5-9% increase in revenue * 

• 1 bad review => 30 customers loss 

– Cheaper compared to advertising. 

– Estimated about 30% of online reviews are fake. 
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* from Luca (2011) 



Alternatives 

• Opinions from Social Media 

– usually meant for friends and family. 

–Hence are usually truthful opinions. 

– People more willing to post social update than 
write a proper review. 

– Less targeted by malicious companies due to 
lower reach. 

 

5 



Problems 

• Social updates tend to be short with little 
details. 

• Improper language makes it harder to analyse 
with existing NLP approach. 

• Sarcasm: 
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Background 

• Aspect-based opinion mining 
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 Example: 
 

• Target: Sony, Microsoft, 
  Nintendo... 

• Aspect: Game consoles 

• PS4 – impressive... 

• XboxOne – cool... 

• Gameboy – retro... 

 

 



Background 

• LDA-based models considered state-of-the-art 
for aspect-based opinion mining (Moghaddam, 2012). 

• LDA is the simplest Bayesian topic model. 

• Topic Model 

– assigns a categorical label (topic) to each word in 
each document. 

– Allow us to analyse the words of each topic, 

– and also topic composition of each document. 
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LDA 

• LDA models the words in each document. 

– In our case a document is a tweet. 
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LDA 

• LDA assigns a topic label to each word. 

– Topic label is latent (unobserved). 
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LDA 

• Words and topics are generated from 
probability distributions. 
– Theta : document-topic distributions 
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Theta1: 60% topic1, 40% topic2 

Theta2: 30% topic1, 70% topic2 



LDA 

• Words and topics are generated from 
probability distributions. 
– Theta : document-topic distributions 

– Psi : topic-word distributions 
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Psi1 : 10% “awesome”, 3% “hard”, etc... 
 
Psi2 : 20% “users”, 5% “consumer reports”, etc... 
 



LDA 

• Probability distributions are assigned Dirichlet 
priors (for LDA). 

– Can use other priors: 

• Hierarchical Dirichlet 

• Hierarchical Dirichlet Process 

• Pitman-Yor Process 

• A flexible prior is important 

 for learning. 
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ILDA 

• Interdependent LDA (ILDA) 

– Extension of LDA for aspect-based opinion mining. 
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ILDA 

• ILDA separates “target” and “opinion” words. 

  a : aspect/topic     t : target 

  r : sentiment/rating     o : opinion 
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ILDA 

• ILDA models the sentiments of each aspects. 

– What is the proportion of positive sentiment for 
aspect “mobile phone”? 
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ILDA 

• Theta : document-topic distributions 

• Psi : aspect-target distributions 

• Phi : sentiment-opinion distributions 

• Eta : aspect-sentiment distributions 
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Alphas are 
the priors 



ILDA 

• Problem with ILDA 

– Sentiment/Rating is arbitrary. 

• Need to manually inspect and give them 
positive/neutral/negative labels. 

– Does not consider target-opinion interaction 
directly. 

• eg:  “short camera quality” is plausible in ILDA. 
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Twitter Opinion Topic Model (TOTM) 

• Designed to extract opinions from tweets. 

• Use state-of-the-art Bayesian non-parametric 
modelling - Hierarchical Pitman-Yor process 
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Twitter Opinion Topic Model (TOTM) 

• Model target-opinion interaction directly. 

– Tasty burger is more likely than friendly burger. 
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Twitter Opinion Topic Model (TOTM) 

• Makes use of emoticons to learn sentiment. 

– Positive opinions tend to come with positive 
emoticon   
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Twitter Opinion Topic Model (TOTM) 

• Hierarchical priors for opinion words. 

– Model both target-specific and general sentiment-
opinion distributions. 
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Twitter Opinion Topic Model (TOTM) 

• Can use existing sentiment lexicon as prior. 

– We use SentiStrength and MPQA lexicons. 
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Sentiment Prior Formulation 

• TOTM uses a tuneable parameter b that 
control the strength of the sentiment lexicon: 

 
 

• X = the sentiment score for sentiment r 

– Higher value means stronger sentiment. 

• Easy to differentiate => simple to learn b. 
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Sentiment Prior Formulation 

• How to formulate X? 

 

 
 

• S = sentiment score from lexicon 

– Assumed positive sentiment => positive S 

– Negative sentiment => negative S 
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Example 

• For the word “happy”: 

– SentiStrength score, S = +2 

– So X = +2 for positive sentiment 

     X = -2 for neutral sentiment 

     X = -2 for negative sentiment 

• Hence it is a priori more likely for “happy” to 
be given a positive sentiment. 
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Training TOTM 

• Collapsed Gibbs Sampling for Hierarchical PYP 

– Probability distributions are integrated out. 

– Store information as counts, like LDA. 

– Algorithm consists of decrementing and 
incrementing the counts. 

– More details in the paper. 
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• For PYP hyperparameters 

– Use auxiliary variable sampler (Teh, 2006). 

• For tuneable sentiment strength parameter b 

– Use gradient ascent: 

• new b = old b + gradient × learning rate 

• Gradient 
 

– Quite intuitive: 

• Increase b if the sentiment score is greater than expected. 

Learning Hyperparameters 
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Data 

• Use 3 corpus: 

– From Twitter 7 dataset (Yang & Leskovec, 2011) 

• Query 9 millions tweets on Electronic Products. 

• Non-English tweets are removed. 

• Tweets containing URL are removed. 

– Sentiment 140 tweets (Go et al., 2009) 

• 1.6 millions tweets annotated using emoticons. 

– SemEval tweets (Nakov et al, 2013) 

• 6322 tweets annotated by humans (Mechanical Turk). 
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Data Preprocessing for TOTM 

• Convert raw tweets to target-opinion pairs. 
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Data Preprocessing for TOTM 

• Part-of-Speech Tagging 

– with TwitterNLP (Owoputi, 2013). 

– State-of-the-art for tweets. 

– Also tokenise the tweets. 

 
@user yep , the quality of the new iPhone is really good :) !  i like it . 

     @      !    ,   D       N      P    D     A         ^      V     R         A   E  , O  V  O , 
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Noun Adjective Proper Noun 



Data Preprocessing for TOTM 

• Normalisation 

– Use a conversion dictionary from Han et al. (2012). 

– But do not convert proper noun (iPhone  /   phone). 

– Examples: 

• amaaazing       amazing 

• nite                    night 

• 2morrow      tomorrow 
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Data Preprocessing for TOTM 

• Target-opinion extraction 

– Use Stanford Dependency parser (De Marneffe et al., 2006). 

– Convert relations to target-opinion pairs. 

– Rules: 
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Data Preprocessing for TOTM 

• Extract positive or negative emoticons 

– Use both eastern and western smileys: 

 

 

 

 

– Use strong sentiment words 

• Such as “happy”, “sad”, etc. 
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Eastern Western 

Positive      ^_^    (^u^ )         :)         =-) 

Negative  <(｀^´)>    T_T         :@       :’( 



Data Preprocessing for TOTM 

• Aggregate tweets based on hashtags 

– Word co-occurrence to be used by topic model. 

– Give a different way to view the results. 

• Remove stop words, common words and rare 
words. 

– These words are of less interest. 

– eg: “he”, “she”, misspellings, etc... 
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Experiments 

• Compare TOTM with 2 baselines: 

– ILDA as mentioned previously. 

– LDA-DP 

• Vanilla LDA but apply ad hoc modification to the prior 
following He (2012). 

• Set          to 0.9 if sentiment for word v is the same as r, 
else set to 0.05 . 
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Experiments 

• Quantitative Evaluations 

– Perplexity 

– Sentiment classification 

– Sentiment prior evaluation 

• Qualitative Evaluations 

– Inspecting word distributions 

– Comparing opinions 

– Opinions extraction 
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Perplexity 

• Commonly used to evaluate topic models. 

• Negatively related to the log likelihood of 
observed words. 

– So lower perplexity is better. 
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  Log likelihood for 
words in the test set 

Normaliser 
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Perplexity 

• Results 

 

 

 

• Significant improvement on opinion words 

– since TOTM model target-opinion interaction 
directly, i.e. better prediction for opinion words. 
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Sentiment Classification 

• Evaluate on annotated tweets. 

• Predict sentiment by selecting the polarity that 
has higher likelihood given the sentiment-word 
distributions. 

 

43 



Sentiment Classification 

• Results 

 

 

 

 

 

• TOTM performs best in sentiment classification. 
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Evaluating Sentiment Prior 

• Use SentiWordNet to evaluate the learned 
sentiment-opinion distributions. 

• SentiWordNet gives positive affinity and 
negative affinity for each word, eg: 
– “Active”   ->  positive 0.5 , negative 0.125 

– “Supreme”  ->  positive 0.75 , negative 0 

• So can calculate both positivity and negativity 
of an opinion word distribution. 

45 



Evaluating Sentiment Prior 

• Evaluation metric 

– Sentiment score – expected sentiment under an 
opinion word distribution. 
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Z = positive or negative 
affinity from SentiWordNet 

opinion word distribution 



Evaluating Sentiment Prior 

• Results 

 

 

 

– No lexicon = use only emoticons 

– SentiStrength is slightly better than MPQA lexicon. 

– Sentiment lexicon gives significant improvement. 

47 



Experiments 

• Quantitative Evaluations 

– Perplexity 

– Sentiment classification 

– Sentiment prior evaluation 

• Qualitative Evaluations 

– Inspecting word distributions 

– Comparing opinions 

– Opinions extraction 
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Inspecting Word Distributions 

• We can inspect aspect-target word distributions 
to see if the target words are correctly clustered. 

– Some examples: 

 

 

 

 

– Target words are closely related. 
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Inspecting Word Distributions 

• Similarly, we can inspect the opinion word 
distributions. 

– TOTM allows in depth analysis by looking at opinion 
word distributions for a particular target. 
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Comparing Opinions 

• Aggregating tweets using hashtags allows 
additional analysis. 

– We inspect hashtags that correspond to electronic 
companies such as #sony, #canon, #samsung... 
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Comparing Opinions 
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• A snapshot 

 



Opinions Extraction 

• Finally, TOTM allows us to query tweets that 
correspond to certain opinions. 

– Example: query opinions on iPhone 
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Major Contributions 

• Introduce TOTM for aspect-based opinion 
mining on tweets. 

– Makes use of emoticons and hashtags on tweets. 

• Novel way of incorporating sentiment prior 
information into topic model. 

– Simple to implement and allow automatic learning 
of hyperparameters. 

 

Thanks! 
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