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Online Reviews .
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Online Reviews

e But...

— Fake reviews are everywhere too.
e Consumers trust reviews more than ads.
e 1 star increase in Yelp = 5-9% increase in revenue *

* 1 bad review => 30 customers loss
— Cheaper compared to advertising.
— Estimated about 30% of online reviews are fake.

* from Luca (2011)
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Alternatives

* Opinions from Social Media ﬂ L 4

— usually meant for friends and family.
— Hence are usually truthful opinions.

— People more willing to post social update than
write a proper review.

— Less targeted by malicious companies due to
lower reach.
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Problems

* Social updates tend to be short with little
details.

* Improper language makes it harder to analyse
with existing NLP approach.

* Sarcasm: - Rk Lo, v

Thanks, #Apple ;)
pic.twitter.com/x4w3r8Ghcy

4~ Reply T3 Retweet Wy Favorite

IMITATION IS THE BEST
FORM OF FLATTERY
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Background

* Aspect-based opinion mining
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Example:

e Target: Sony, Microsoft,

Nintendo...

* Aspect: Game consoles

PS4 — impressive...
XboxOne — cool...
Gameboy — retro...



Background

e LDA-based models considered state-of-the-art
for aspect-based opinion mining (Moghaddam, 2012).

* LDA is the simplest Bayesian topic model.

* Topic Model

— assigns a categorical label (topic) to each word in
each document.

— Allow us to analyse the words of each topic,
— and also topic composition of each document.
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LDA

e LDA models the words in each document.

— In our case a document is a tweet. Plate

Notation

/

" Sam Shahidi
% All | have to say is iIPhone 6 Plus battery life is awesome

= ' Charlie Tyler
Pt This iPhone 6 battery is incredible

W
ZApple News l \\

Bending an iPhone & Plus |5 Pretty Darn Hard, Consurmer Reports Says -
Fescode (blog) bit.lyA nwGji #apple

<2 arianna. 9
“EMBCHEws: New iPhone & is prone to bending, wusers find nbcnews tofEeg
pic twitter com/FEIRygHE "ty turning it off then back on N

® & view photo
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LDA

* LDA assigns a topic label to each word.
— Topic label is latent (unobserved).

. sam Shahidi f
C Al hawe to Say' is iPhone 5 Plus battew life 5 awesome

. ' Charlie Tyler
e d  This iPhone 6 hattery is incredible

topicl topic2

ZApple News & ¢

Bending an iPhone & Plus |5 Pretty Darn Hard, Consurmer Reports Says -
Fescode (blog) bit.lyA nwGji #apple

topic2

<2 arianna. 9
"NBCHEwS: Mew iPhone 6 i5 prone to bending, users find nbonews tolivEen
pic twitter com/FEIRygHE "ty turning it off then back on

® & view photo
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LDA

 Words and topics are generated from
probability distributions.

— Theta : document-topic distributions

' Charlie Tyler
@@ This IPhone 6 battery is incredible

Thetal: 60% topicl, 40% topic2

ZApple News
Bending an iPhone & Plus |5 Pretty Darn Hard, Consurmer Reports Says -
Fescode (blog) bit.lyA nwGji #apple

Theta2: 30% topicl, 70% topic2

2 arianna. ¥
ﬂ "NECHNews: Mew iPhone 6 is prane to bending, users find nbonews tofdZ 6

pic twitter com/FEIRygHE "ty turning it off then back on

® & view photo K M
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LDA

 Words and topics are generated from
probability distributions.

— Theta : document-topic distributions
— Psi : topic-word distributions

Psil : 10% “awesome”, 3% “hard”, etc...

Psi2 : 20% “users”, 5% “consumer reports”, etc...

<0 e|
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LDA

* Probability distributions are assigned Dirichlet
priors (for LDA).

— Can use other priors:
e Hierarchical Dirichlet @J:
 Hierarchical Dirichlet Process

 Pitman-Yor Process @
* A flexible prior is important
for learning.




ILDA .

* |Interdependent LDA (ILDA)

— Extension of LDA for aspect-based opinion mining.

HOror-oHo+do
f N p R




ILDA

* |LDA separates “target” and “opinion” words.
a : aspect/topic t : target

//, r : sentiment/rating 0: opinionk

observed
latent

16



ILDA .

* |[LDA models the sentiments of each aspects.

— What is the proportion of positive sentiment for
aspect “mobile phone”?




ILDA

Theta : document-topic distributions
Psi : aspect-target distributions

* Phi:sentiment-opinion distributions

* Eta:aspect-sentiment distributions Alphas are

the priors




ILDA

* Problem with ILDA

— Sentiment/Rating is arbitrary.

* Need to manually inspect and give them
positive/neutral/negative labels.

— Does not consider target-opinion interaction
directly.

e eg: “short camera quality” is plausible in ILDA.
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Outline

* Twitter Opinion Topic Model
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Twitter Opinion Topic Model (TOT

* Designed to extract opinions from tweets.

e Use state-of-the-art Bayesian non-parametric
modelling - Hierarchical Pitman-Yor process

otFo-o-Hodo
@ @)
A Ny

DIL_AVLR
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Twitter Opinion Topic Model (TOT

* Model target-opinion interaction directly.

— Tasty burger is more likely than friendly burger.
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Twitter Opinion Topic Model (TOT

e Makes use of emoticons to learn sentiment.

— Positive opinions tend to come with positive
emoticon ©

00!

Q)
0,0}
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Twitter Opinion Topic Model (TOT

* Hierarchical priors for opinion words.

— Model both target-specific and general sentiment-
opinion distributions.

G (o) ++< ()<(n)
OO0
d
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Twitter Opinion Topic Model (TOT

* Can use existing sentiment lexicon as prior.
— We use SentiStrength and MPQA lexicons.

@p P >@-
M4

@)+

A Ny

,
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Sentiment Prior Formulation

e TOTM uses a tuneable parameter b that
control the strength of the sentiment lexicon:

¢r, x (14 b)*r

e X =the sentiment score for sentiment r

— Higher value means stronger sentiment.

e Easy to differentiate => simple to learn b.

. :



Sentiment Prior Formulation

e How to formulate X?

y

Sy if r=1 (positive)
Xy = —|Sy| if 7 =0 (neutral)

| —Sv if 7= —1 (negative)

e S =sentiment score from lexicon
— Assumed positive sentiment => positive S
— Negative sentiment => negative S
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Example

* For the word “happy”:
— SentiStrength score, S = +2
— So X = +2 for positive sentiment
X = -2 for neutral sentiment
X = -2 for negative sentiment

 Hence it is a priori more likely for “happy” to
be given a positive sentiment.

. ,



Training TOTM

* Collapsed Gibbs Sampling for Hierarchical PYP
— Probability distributions are integrated out.
— Store information as counts, like LDA.

— Algorithm consists of decrementing and
incrementing the counts.

— More details in the paper.
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Learning Hyperparameters

* For PYP hyperparameters

— Use auxiliary variable sampler (Teh, 2006).

* For tuneable sentiment strength parameter b

— Use gradient ascent:
* newb=oldb+ gradient X Iearning rate

— By, [X:]) + 0’ (D)

— Quite intuitive: '\

* Increase b if the sentiment score is greater than expected.

. 30
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Outline

* Experiments
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Data

* Use 3 corpus:

— From Twitter 7 dataset (vang & Leskovec, 2011)
* Query 9 millions tweets on Electronic Products.
* Non-English tweets are removed.
* Tweets containing URL are removed.

— Sentiment 140 tweets (Go et al., 2009)

* 1.6 millions tweets annotated using emoticons.

— SemEval tweets (Nakov et al, 2013)

* 6322 tweets annotated by humans (Mechanical Turk).

. 32



Data Preprocessing for TOTM

* Convert raw tweets to target-opinion pairs.

Tweets Twitter NLP
J‘ pd

Part of Speech Tagging Normalization Databasej

\ —

Normalization Stanford Dependency Parser

~a e

Target-opinion Extraction,
Emotion Indicator Extraction

v

Hashtag Aggregation,
Remove Infrequent Tags

¥

Decapitalize, Remove Stop Words,
Common Words and Infrequent Words

v

Processed Tweets \
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Data Preprocessing for TOTM

e Part-of-Speech Tagging
— with TwitterNLP (owoputi, 2013).
— State-of-the-art for tweets.
— Also tokenise the tweets.

@user yep , the quality of the new iPhone is really good :) ! i like it .

@ ! ,D N P D A AV R A E,OVO,
Noun Adjective Proper Noun
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Data Preprocessing for TOTM

* Normalisation
— Use a conversion dictionary from Han et al. (2012).
— But do not convert proper noun (iPhone 4 phone).

— Examples:
* amaaazing — amazing
* nite —> night

e 2morrow  —> tomorrow

. 35



Data Preprocessing for TOTM

* Target-opinion extraction
— Use Stanford Dependency parser (De Marneffe et al., 2006).
— Convert relations to target-opinion pairs.

— Rules: amod(N, A) < N, A >
acomp(V, A) + nsubj(V,N) =< N, A >
cop(A, V) + nsubj(A, N) -< N, A >
< hi,m > +conj_and(hi,h2) —< ha,m >
< h,m1 > 4conj_and(mi, m2) =< h,mz >
< h,m > +neg(m,not) —-< h,not +m >
< h,m > 4+nn(h,N) < N+ h,m >
< h,m>4nn(N,h) =>< h+ N,m >
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Data Preprocessing for TOTM

* Extract positive or negative emoticons

— Use both eastern and western smileys:

Eastern Western
Positive AN (Aghn) :) =-)
Negative | <( A)> T.T @

— Use strong sentiment words

/()

e Such as “happy”, “sad”, etc.
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Data Preprocessing for TOTM

* Aggregate tweets based on hashtags
— Word co-occurrence to be used by topic model.
— Give a different way to view the results.

* Remove stop words, common words and rare
words.
— These words are of less interest.
— eg: “he”, “she”, misspellings, etc...
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Experiments

e Compare TOTM with 2 baselines:

— ILDA as mentioned previously.

— LDA-DP

 Vanilla LDA but apply ad hoc modification to the prior
following He (2012).

* Set ¢, to 0.9 if sentiment for word v is the same as r,
else set to 0.05 .
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Experiments

* Quantitative Evaluations
— Perplexity
— Sentiment classification
— Sentiment prior evaluation

* Qualitative Evaluations
— Inspecting word distributions
— Comparing opinions
— Opinions extraction
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Perplexity

e Commonly used to evaluate topic models.

* Negatively related to the log likelihood of
observed words.

— So lower perplexity is better.

Log likelihood for
& Wwords in the test set

_ZdDzl logP(u_)’d)
ZdDzl Ng

perplexity(W) = exp (

Normaliser
(Number of words)
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Perplexity

e Results
Target Opinion Overall
LDA-DP N/A 510.15 +0.08 N/A
ILDA 594 .81 + 13.61 519.84 +0.43 H5H6.03 +6.22
TOTM 592.91 +13.86 | 137.42 +0.28 | 285.42 + 3.23

* Significant improvement on opinion words

— since TOTM model target-opinion interaction

directly, i.e. better prediction for opinion words.

-
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Sentiment Classification

 Evaluate on annotated tweets.

* Predict sentiment by selecting the polarity that
has higher likelihood given the sentiment-word

distributions.

polarity(d) = argmax H Or 04
r={—1,1} i
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Sentiment Classification

* Results
Sent140 Tweets | Accuracy | Precision | Recall | Fl-score
LDA-DP 57.3 56.1 90.1 69.2
ILDA 54.1 56.9 55.3 55.9
TOTM 65.0 61.7 90.2 73.3
SemEval Tweets | Accuracy | Precision | Recall | Fl-score
LDA-DP 52.1 65.0 58.3 61.4
ILDA 46.8 60.7 53.6 56.3
TOTM 73.3 84.0 74.9 79.0

* TOTM performs best in sentiment classification.
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Evaluating Sentiment Prior

e Use SentiWordNet to evaluate the learned
sentiment-opinion distributions.

e SentiWordNet gives positive affinity and

negative affinity for each word, eg:
— “Active” -> positive 0.5, negative 0.125
— “Supreme” -> positive 0.75, negative O

* So can calculate both positivity and negativity
of an opinion word distribution.

-
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Evaluating Sentiment Prior

 Evaluation metric

— Sentiment score — expected sentiment under an
opinion word distribution.

opinion word distribution

/

Vo
Score(¢r, Z) = Ey,. |Z] = Z Ly Pro

f

Z = positive or negative
affinity from SentiWordNet
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Evaluating Sentiment Prior

e Results

Electronic Product Tweets Sent140 Tweets SemEval Tweets
Negativity Positivity Negativity Positivity Negativity Positivity
No lexicon 17.82 +1.26 | 17.39 +0.45 | 22.63 096 | 32.31 +1.08 15.24 +1.45 | 21.03 +3.85
MPQA 23.91 1049 | 31.96 £0.09 | 24.10 +0.49 | 42.65 +1.02 | 16.88 +0.31 | 29.47 +0.99
SentiStrength | 23.19 +o0.0s | 35.69 +0.33 | 24.29 +1.07 | 41.26 £153 | 16.94 +0.7s | 32.17 1207

— No lexicon = use only emoticons
— SentiStrength is slightly better than MPQA lexicon.
— Sentiment lexicon gives significant improvement.
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Experiments

. otie Euolod
—Peorslosdby
Cant laccificat
Conts : ot
* Qualitative Evaluations
— Inspecting word distributions
— Comparing opinions
— Opinions extraction
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Inspecting Word Distributions

 We can inspect aspect-target word distributions
to see if the target words are correctly clustered.

— Some examples:

Aspects (a) Target Words (%)
Camera camera, pictures, video camera, shots
Apple 1Pod ipod, ipod touch, songs, song, music
Android phone | android, apps, app, phones, keyboard
Macbook macbook, macbook pro, macbook air
Nintendo games | nintendo, games, game, gameboy

— Target words are closely related.
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* Similarly, we can inspect the opinion word
distributions.

Inspecting Word Distributions

— TOTM allows in depth analysis by looking at opinion

word distributions for a particular target.
Target (t) | +/— Opinions (0)
- dead damn stupid bad crazy
OIE — mobile smart good great ***ing
bitiay - terrible poor bad horrible non-existence
+ good long great 7hr ultralong
— addictive stupid free full addicting
same + great good awesome favorite cat-and-mouse
S — silly al.'gentinian cold huge stupid
+ hot grilled good sweet awesome

* Words in bold are more specific and can only describe certain targets.

-
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Comparing Opinions

* Aggregating tweets using hashtags allows
additional analysis.

— We inspect hashtags that correspond to electronic
companies such as #sony, #canon, #samsung...

51




* A snapshot

Comparing Opinions

Aspects / Targets’ Opinions

Brands | Sentiment Camera Phone Printer
camera — expensive small bad printer — obscure violent digital
B lens — prime cheap broken scanner — cheap
Canon , _ .
camera — great compact amazing printer — good great nice
t pictures — great nice creative scanner — great fine
camera — big crappy defective phone — worst crappy shittest printer — stupid
g B lens — vertical cheap wide battery life — low
ony photos — great lovely amazing phone — great smart beautiful
E camera — good great nice reception — pertfect
camera — digital free crazy phone — stupid bad fake scanner — worst
B shots — quick wide battery life — solid poor terrible
Samsung

camera — gorgeous great cool
pics — nice great perfect

phone — mobile great nice
service —+ good sweet friendly
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Opinions Extraction

* Finally, TOTM allows us to query tweets that
correspond to certain opinions.

— Example: query opinions on iPhone

Positive

Negative

RT @user : the iPhone is so awe-
some!!! Emailing, texting, surfing the
sametime! — Can do all tgat while
talkin on the phone?...

@user awww thx! [ can’t send an
email right now bc my iPhone is stupid
with sending emails. Lol but I can
tweet or dm u?

Ahhh!  Tweeting on my gorgeous
iPhone! I missed you! hehe am on my
way home, put the kettle on will you

pls:)

It would appear that the iPhone, due to
construction, is weak at holding signal.
Combine that with a bullshit 3G net-
work in Denver.

Thanks @user for the link to iPhone vs
Blackberry debate. I got the iPhone &
1t’s just magic! So intuitive!

@user @user Ah, well there you go.
The iPhone is dead, long live Android!

3

Finally my fave lover @user has Twit-
ter & will be using it all the time with
her cool new iPhone :)

@user Finally eh? :D I think iphone is
so ugly x.x
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Major Contributions

* Introduce TOTM for aspect-based opinion
mining on tweets.

— Makes use of emoticons and hashtags on tweets.

* Novel way of incorporating sentiment prior
information into topic model.

— Simple to implement and allow automatic learning
of hyperparameters.

Thanks!
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