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Appendix A. On Modelling the Document-topic Hierarchy

Here we discuss the motivation of modelling the document-topic hierarchy (θ and θ′) in
more details. As mentioned in the paper, such modelling allows the citation information
to be given more strength compared to the text information. Recall that each citation and
each word correspond to a customer count (see Section 4 and Section 5 in the paper), thus
we would have more customer counts for the text information than that of the citation
information. An issue with this is that the text information would overwhelm the citation
information if they are treated equally. One way to address this problem would be to model
the document-topic hierarchy, as the text information is discounted in θ′. Additionally,
since word tokens are not equal to citation tokens, we argue that they really should not be
coming from the same parent node.

We illustrate with an example, say we have a document with only 2 citations and 6
words, then cθ = 6 corresponds to the text information. If we do not model the document-
topic hierarchy, the citation information would contribute 2 counts to cθ, where its effect
would be overwhelmed by the text information. If we model the document-topic hierarchy,
then the text information get passed up to θ′ in the form of table count, tθ, which is
lower than cθ. This table count becomes the customer count in θ′, which means the text
information now contributes less count in θ′. The citation information contributes 2 count
to cθ

′
directly, its effect is now relatively greater. In our experiments, we find that the table

counts in θ tend to be about half of the customer counts in θ.

c© 2014 K.W. Lim & W. Buntine.



Lim Buntine

Appendix B. Delta Method Approximation

We employ the delta method to show that∫
f(θ) exp(−g(θ)) dθ ≈ exp(−g(θ̂))

∫
f(θ) dθ

for a multivariate distribution characterised by p(θ) that is proportional to f(θ). Here, θ̂ is
the expected value of the the multivariate distribution:

θ̂ = E[θ] =

∫
θ p(θ) dθ , f(θ) = c× p(θ) .

First we apply a one step Taylor approximation for a function h(θ) = exp(−g(θ)) at θ̂:

h(θ) ≈ h(θ̂) +
∑
i

h′i(θ̂) (θi − θ̂i) , (1)

where h′i(θ̂) denotes the i-th partial derivative of h(·) evaluated at θ̂:

h′i(θ̂) = −g′i(θ̂)h(θ̂) .

Multiply Equation 1 with f(θ) and integrating gives∫
f(θ)h(θ) dθ =

∫
f(θ)

(
h(θ̂) +

∑
i

h′i(θ̂)(θi − θ̂i)

)
dθ

= h(θ̂)

∫
f(θ) dθ +

∑
i

h′i(θ̂)

∫
f(θ) (θi − θ̂i) dθ︸ ︷︷ ︸

0

= h(θ̂)

∫
f(θ) dθ . (2)
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Appendix C. Metropolis-Hastings Algorithm for Citation Network

We detail our MH algorithm for the citation network as follows. First, for each document i,
we estimate the expected document-topic prior θ′i with

θ̂′i =

(
· · · ,

(αθ
′
iT θ

′
i + βθ

′
i)νaik + c

θ′i
k − α

θ′iT
θ′i
k

βθ
′
i + Cθ

′
i

, · · ·

)
. (3)

Note that νai in Equation 3 is recursively computed from µ and its associated counts.
Recall that we jointly model xij and yij as a Poisson distribution:

xij , yij = k|λ, θ′ ∼ Poisson
(
λ+i λ

−
j λ

T
k θ
′
ikθ
′
jk

)
. (4)

Then, for each document pair (i, j) where xij = 1, we decrement the network counts
associated with xij , and re-sample yij with the proposal distribution derived from Equa-
tion 4:

p(ynewij = k|θ̂′i, θ̂′j) ∝ λ
T
k θ̂
′
ikθ̂
′
jk exp

(
−λ+i λ

−
j λ

T
k θ̂
′
ikθ̂
′
jk

)
. (5)

which can be further simplified since the terms inside the exponential are very small, hence
the exp term approximates to 1. We empirically inspected the exponential term and we
found that almost all of them are between 0.99 and 1. This means the ratio of the expo-
nentials is not significant for sampling new citing topic ynewij . So

p(ynewij = k|θ̂′i, θ̂′j) ∝ λ
T
k θ̂
′
ikθ̂
′
jk . (6)

Using the superscripts �new and �old to denote the proposed sample and the old value
respectively, we compute the acceptance probability A for the newly sampled ynewij = y′,
changed from yij = y∗, and the successive change to the document-topic priors θ′ (to θ′new):

A =

exp
(
−
∑

ijk λ
+
i λ
−
j λ

T
k θ̂
′ new
ik θ̂′

new

jk

)
exp

(
−
∑

ijk λ
+
i λ
−
j λ

T
k θ̂
′
ikθ̂
′
jk

) p(Z,W,T,C+new|ζ)

p(Z,W,T,C+old|ζ)

λTy∗ θ̂
′ new
iy∗ θ̂′

new

jy∗

λTy′θ
′
iy′θ
′
jy′

∑
k λ

T
k θ
′
ikθ
′
jk∑

k λ
T
k θ̂
′ new
ik θ̂′

new

jk

.

(7)

Note that we have abused the notations i and j in the above equation, where the i and
j in the summation indexes all documents instead of pointing to particular document i
and document j. We decided against introducing additional variables to make things less
confusing.

Finally, if the sample is accepted, we update yij and the associated customer counts.
Otherwise, we discard the sample and revert the changes.
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Appendix D. Sampling the Concentration Parameter for PYPs

Here we outline the procedure to sample the concentration parameter βN of a PYP dis-
tributed variable N , using an auxiliary variable sampler. Assuming each βN has a Gamma
distributed hyperprior with shape τ0 and rate τ1, we first sample the auxiliary variables ξ
and ψj for j ∈ {0, TN − 1}:

ξ|βN ∼ Beta(CN , βN ) , ψj |αN , βN ∼ Bernoulli

(
βN

βN + jαN

)
. (8)

We then sample a new β′N from the following conditional posterior given the auxiliary
variables:

β′N |ξ, ψ ∼ Gamma
(
τ0 +

∑
jψj , τ1 − log(1− ξ)

)
. (9)

We note that we apply a vague hyperprior for βN by setting τ0 = τ1 = 1 in this paper.

Appendix E. Keywords for Querying CiteSeerX Datasets

1. For ML dataset:
Machine Learning: neural network, pattern recognition, indexing term, support vector

machine, learning algorithm, machine learning, computer vision, face recognition, feature
extraction, image processing, high dimensionality, image segmentation, pattern classifica-
tion, real time, feature space, decision tree, principal component analysis, feature selection,
backpropagation, edge detection, object recognition, maximum likelihood, statistical learning
theory, supervised learning, reinforcement learning, radial basis function, support vector,
em algorithm, self organization, image analysis, hidden markov model, artificial neural net-
work, independent component analysis, genetic algorithm, statistical model, dimensional
reduction, indexation, unsupervised learning, gradient descent, large scale, maximum likeli-
hood estimate, statistical pattern recognition, cluster algorithm, markov random field, error
rate, optimization problem, satisfiability, high dimensional data, mobile robot, nearest neigh-
bour, image sequence, neural net, speech recognition, classification accuracy, diginal image
processing, factor analysis, wavelet transform, local minima, probability distribution, back
propagation, parameter estimation, probabilistic model, feature vector, face detection, ob-
jective function, signal processing, degree of freedom, scene analysis, efficient algorithm,
computer simulation, facial expression, learning problem, machine vision, dynamic system,
bayesian network, mutual information, missing value, image database, character recogni-
tion, dynamic program, finite mixture model, linear discriminate analysis, image retrieval,
incomplete data, kernel method, image representation, computational complexity, texture
feature, learning method, prior knowledge, expectation maximization, cost function, multi
layer perceptron, iterated reweighted least square, data mining.
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2. For M10 dataset:
Biology: enzyme, gene expression, amino acid, escherichia coli, transcription factor,

nucleotides, dna sequence, saccharomyces cerevisiae, plasma membrane, embryonics.
Computer Science: neural network, genetic algorithm, machine learning, information

retrieval, data mining, computer vision, artificial intelligent, optimization problem, support
vector machine, feature selection.

Social Science: developing country, higher education, decision making, health care,
high school, social capital, social science, public health, public policy, social support.

Financial Economics: stock returns, interest rate, stock market, stock price, exchange
rate, asset prices, capital market, financial market, option pricing, cash flow.

Material Science: microstructures, mechanical property, transmission electron mi-
croscopy, grain boundary, composite material, materials science, titanium, silica, differen-
tial scanning calorimetry, tensile properties.

Physics: magnetic field, quantum mechanics, field theory, black hole, kinetics, string
theory, elementary particles, quantum field theory, space time, star formation.

Petroleum Chemistry: fly ash, diesel fuel, methane, methyl ester, diesel engine,
natural gas, pulverized coal, crude oil, fluidized bed, activated carbon.

Industrial Engineering: power system, construction industry, induction motor, power
converter, control system, voltage source inverter, permanent magnet, digital signal proces-
sor, sensorless control, field oriented control.

Archaeology: radiocarbon dating, iron age, bronze age, late pleistocene, middle stone
age, upper paleolithic, ancient dna, early holocene, human evolution, late holocene.

Agriculture: irrigation water, soil water, water stress, drip irrigation, grain yield,
growing season, crop yield, soil profile, soil salinity, crop production

3. For AvS dataset:
History: nineteeth century, cold war, south africa, foreign policy, civil war, world war

ii, latin america, western europe, vietnam, middle east.
Religion: social support, foster care, child welfare, human nature, early intervention,

gender difference, sexual abuse, young adult, self esteem, social services.
Physics: magnetic field, quantum mechanics, string theory, field theory, numerical

simulation, black hole, thermodynamics, phase transition, electric field, gauge theory.
Chemistry: crystal structure, mass spectrometry, copper, aqueous solution, binding

site, hydrogen bond, oxidant stress, free radical, liquid chromatography, organic compound.
Biology: genetics, enzyme, gene expression, polymorphism, nucleotides, dna sequence,

saccharomyces cerevisiae, cell cycle, plasma membrane, embryonics.
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Appendix F. Categories for LINQS Datasets

Here we list the categories labels for the datasets obtained from LINQS (Sen et al., 2008)1.

4. For AI dataset (6 classes):
Agents, AI, DB, IR, ML, HCI.

5. For Cora dataset (7 classes):
Case Based, Genetic Algorithms, Neural Networks, Probabilistic Methods,

Reinforcement Learning, Rule Learning, Theory.

6. For PubMed dataset (3 classes):
Diabetes Mellitus, Experimental,
Diabetes Mellitus Type 1,
Diabetes Mellitus Type 2.

Appendix G. Recovering Word Counts from TF-IDF

The PubMed dataset (Sen et al., 2008) was preprocessed to TF-IDF (term frequency-inverse
document frequency) format, i.e. the raw word count information is lost. Here, we describe
how we recover the word count information, using a simple and reasonable assumption.

We denote tdw as the TF-IDF for word w in document d, fdw as the corresponding term
frequency (TF), and iw as the inverse document frequency (IDF) for word w. Our aim is
to recover the word counts cdw given the TF-IDF. TF-IDF is computed2 as

tdw = fdw × iw , fdw =
cdw∑
w cdw

, iw = log

∑
d 1∑

d I(cdw > 0)
, (10)

where I(·) is the indicator function.
We note that I(cdw > 0) = I(tdw > 0) since the TF-IDF for a word w is positive if and

only if the corresponding word count is positive. This allows us to compute the IDF iw
easily from Equation 10. We can then determine the TF:

fdw = tdw/iw (11)

= tdw ×
(

log

∑
d 1∑

d I(tdw > 0)

)−1
. (12)

Now we are left with computing cdw given the fdw, however, we can obtain infinitely
many solutions since we can always multiply cdw by a constant and get the same fdw.
Luckily, since we are working with natural language, it is reasonable to assume that the
least occurring words in a document only occur once, or mathematically,

cdw = 1 for w = arg min
w

fdw . (13)

1. http://linqs.cs.umd.edu/projects/projects/lbc/

2. Note that there are multiple ways to define a TF-IDF in practice. The specific TF-IDF formula used by
the PubMed dataset was recovered via trial-and-error.
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Thus we can work out the normaliser
∑

w cdw and recover the word counts for all words
in all documents.∑

w cdw =
1

minw fdw
, cdw = fdw ×

∑
w cdw . (14)

Appendix H. Exclusion Words to Detect Incorrect Authors

society, university, universität, universitat, author, advisor, available, acknowledgement,
mathematik, video, abstract, industrial, review, example, department, information, enter-
prises, informatik, laboratory, introduction, encyclopedia, algorithm, section

Appendix I. Estimating Topic Distributions for Test Documents

Here, we describe a simple method to estimate the topic distributions θ of the test docu-
ments, which is used for perplexity and clustering evaluation. We note that for perplexity
evaluation, only the title of the test documents are used in estimating θ; while for the
clustering task, both title and abstract text are used.

Denoting wdn to represent the word at position n in a test document d, we independently
estimate the topic assignment zdn of word wdn by sampling from its predictive posterior
distribution given the learned author-topic distributions ν and topic-word distributions φ:

p(zdn|wdn, ν, φ) ∝
∑
k

νadk φkwdn
, (15)

noting that the intermediate distributions are integrated out (see Appendix J).
We then build the customer counts cθd from the sampled z (for simplicity, we set the

corresponding table counts as 1). With these, we can estimate the document-topic distri-
bution:

θd =

(
· · · ,

(αθdT θd + βθd)νadk + cθdk − α
θdT θdk

βθd + Cθd
, · · ·

)
, (16)

If citation network information is present, we refine the document-topic distribution θd
using the linking topic ydj for train document j where xdj = 1. The linking topic ydj is
sampled from the estimated θd and is added to the customer counts, which further updates
the document-topic distribution θd.

Doing the above gives a sample of the document-topic distribution θ
(s)
d . We adopt a

Monte Carlo approach by generating R = 500 samples of θ
(s)
d , and calculate the Monte

Carlo estimate of θd:

θMC
d =

∑
s θ

(s)
d

R
. (17)

7



Lim Buntine

Appendix J. Integrating Out Probability Distributions

We note that in the paper, we have the following equation when calculating perplexity:

p(wdn|θd, φ) =
∑
k

p(wdn|zdn = k, φk) p(zdn = k|θd) (18)

=
∑
k

φkwdn
θdk , (19)

where φ′ is implicitly integrated out to arrive at Equation 19.
Here, we present the detailed derivation on how this works:

p(wdn|zdn = k, φk) =

∫
φ′dk

p(wdn, φ
′
dk|zdn, φk) (20)

=

∫
φ′dk

p(wdn|zdn, φ′dk) p(φ′dk|φk) (21)

=

∫
φ′dk

φ′dkwdn
p(φ′dk|φk) (22)

= E[φ′dkwdn
|φk] (23)

= φkwdn
, (24)

where E[·] denotes the expectation value. We note that the last step (Equation 24) follows
from the fact that the expected value of a PYP is the probability vector corresponding to
the base distribution of the PYP3.

Appendix K. Additional Results

K.1. Perplexity Comparison for AvS, AI, Cora and PubMed Datasets

AvS AI
Train Test Train Test

Bursty HDP-LDA 2460.36± 66.38 2612.77± 91.70 1509.16± 4.09 1577.84± 33.81

Non-parametric ATM 2199.65± 5.02 2481.72± 6.09 N/A N/A

CNTM w/o network 1621.50± 19.48 2079.42± 2.62 1509.35± 4.06 1580.16± 32.57

CNTM w network 1620.55± 2.18 2028.06± 10.87 1275.27± 13.97 1530.81± 49.81

Table 1: Train and Test Perplexity for AvS and AI Datasets.

We present additional results that were not shown in the paper in Table 1 and Table 2.
Note that for AI, Cora and PubMed datasets, non-parametric ATM was not performed due
to the lack of authorship information in the data. Additionally, we also note that the CNTM
here is more akin to a variant of HDP-LDA (with network extension) when no author is
observed, which explains why the perplexity results are very similar.

3. Note that this is only true when the base distribution is a probability distribution.
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Cora PubMed
Train Test Train Test

Bursty HDP-LDA 678.13± 1.95 706.81± 16.96 299.86± 0.15 300.10± 1.28

CNTM w/o network 620.30± 3.37 686.85± 16.63 300.98± 0.20 301.19± 1.23

CNTM w network 621.12± 6.65 687.95± 15.69 312.30± 1.26 303.21± 1.19

Table 2: Train and Test Perplexity for Cora and PubMed Datasets.

K.2. Clustering Results Correspond to Different Degree of Author-merging

M10 AvS
Purity NMI Purity NMI

η = 2 0.73± 0.04 0.74± 0.01 0.81± 0.01 0.75± 0.01

η = 3 0.75± 0.05 0.75± 0.02 0.82± 0.02 0.75± 0.00

η = 4 0.78± 0.04 0.76± 0.02 0.82± 0.01 0.76± 0.00

η = 5 0.78± 0.02 0.77± 0.03 0.84± 0.02 0.76± 0.02

Table 3: Clustering results by varying η from 2 to 5.

K.3. Topic Summaries for M10 and AvS Datasets

Topic Top Words

DNA Sequencing genes, gene, sequence, binding sites, dna
Agriculture soil, water, content, soils, ground

Financial Market volatility, market, models, risk, price
Bayesian Modelling bayesian, methods, models, probabilistic, estimation
Quantum Theory quantum, theory, quantum mechanics, classical, quantum field

Table 4: Topic Summary for M10 Dataset.

Topic Top Words

Language Modelling type, polymorphism, types, language, systems
Molecular Structure copper, protein, model, water, structure

Quantum Theory theory, quantum, model, quantum mechanics, systems
Social Science research, development, countries, information, south africa

Woman’s and Children’s Health children, health, research, social, women

Table 5: Topic Summary for AvS Dataset.
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K.4. Convergence Analysis for Model Training

In Figure 1, we show the training word log likelihood
∑

d,n log(p(wdn|zdn, φ′)) for the CNTM
trained with and without the network information. It is interesting to see that the word
likelihood improves significantly once the network information is used in the model, which
is after the 1000th iteration. Note that the model without network has better log likelihood
initially simply due to random chance (even though we have used the same seed, due to
having additional network component in full CNTM, the initialisation is different for the
two models).

With Network 

Without Network 
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Figure 1: Words log likelihood vs iterations during training of the CNTM: the red line
shows the log likelihood of the model with the citation network while the blue
line represents the same model without citation network.

Appendix L. Computational Complexity for CNTM

Here we briefly discuss the computational complexity of the proposed MCMC algorithm
for CNTM. We first note that we did not particularly optimise our implementation for
algorithm speed. All implementations are written in Java4.

For the Gibbs sampling algorithm of the hierarchical PYP topic model, we implemented
a general Gibbs sampling framework that works with arbitrary PYP network, this allows us
to test various PYP topic models with ease and without spending too much time in coding.
However, having a general framework for PYP topic models means it is harder to optimise
the implementation, thus it performs slower than existing implementations (such as hca5).
The Gibbs sampling algorithm is linear (in time) with the number of words in the corpus
and the number of topics, and constant time with the number of citations.

A naive implementation of the MH algorithm for the citation network would be of poly-
nomial time, due to the calculation of the double summation in the posterior. However,
with simple caching and reformulation of the double summation, we can evaluate the pos-
terior in linear time. Our implementation of the MH algorithm is linear (in time) with the

4. http://java.com/

5. http://mloss.org/software/view/527/
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number of citations and the number of topics, and it is constant time with respect to the
number of words.

We present the average time taken to perform the MCMC algorithm for 2000 iterations
in Table 6. All the experiments were performed with a machine having Intel(R) Core(TM)

i7 CPU @ 3.20GHz (though only 1 processor was used) and 24 Gb RAM.

Datasets Number of Words Number of Citations Number of Topics Running Time (mins)

ML 8 270 084 1 105 462 20 16 194
M10 595 918 77 222 50 1 772
AvS 1 102 608 54 601 30 2 131
AI 105 322 4 608 6 63

Cora 49 286 5 429 7 32
PubMed 1 332 869 44 335 3 650

Table 6: Time taken by CNTM to run the learning algorithm for 2000 iterations.

Appendix M. Visualisation Results

We graphically visualise the author-topics network extracted by CNTM with Graphviz6.
Defining the influence of an author i as the sum of the λ− of all his publications:∑

d

λ−d I(ad = i) , (25)

noting that ad denotes the author of document d as previously defined, we analyse the
influential authors on the ML, M10, AvS, and similarly obtained NLP and IR datasets.

Figure 2 shows a snapshot of the visualisation result of the ML dataset. The visu-
alisation result illustrates the connections between authors and topics. For example, we
can see that T. Joachims works in the area of classification, support-vector machines
and information retrieval; while M. Jordan works with probabilistic inference, classifi-
cation and another topic that is not shown in Figure 2. For the full visualisation re-
sult and results on the other dataset, see https://drive.google.com/folderview?id=

0B74l2KFRFZJmVXdmbkc3UlpUbzA. The results are in SVG and best viewed in Chrome
or Firefox with magnification. We suggest to download the files instead of viewing with
GoogleDoc for best quality.

6. http://www.graphviz.org/
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Figure 2: Visualisation snapshot of the ML Dataset. The pink rectangles are the topics
learned by CNTM, the intensity (redness) and the size of the topics corresponds
to the topic proportion. The ellipses denote the authors, the size of the ellipses
correspond to the author’s influence. The strength of the connections are given
by the lines’ thickness.
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