
Z−Transforms and its Inference on Partially Observable Point Processes

Young Lee, Thanh Vinh Vo, Kar Wai Lim, Harold Soh
National University of Singapore

Abstract
This paper proposes an inference framework based
on the Z−transform for a specific class of non-
homogeneous point processes. This framework
gives an alternative method to maximum likelihood
estimation which is omnipresent in the field of point
processes. The inference strategy is to couple or
match the theoretical Z−transform with its empir-
ical counterpart from the observed samples. This
procedure fully characterizes the distribution of the
point process since there exists a one-to-one map-
ping with theZ−transform. We illustrate how to use
the methodology to estimate a point process whose
intensity is driven by a general neural network.

1 Introduction

Background and issues. Point processes are statistical mod-
els for modelling random times at which events of interest take
place. In a variety of applications in machine learning, maxi-
mum likelihood estimation can be difficult for point process
fitting, depending on the specificities of the point process it-
self. As the likelihood may not be convex in the parameters, a
maximization routine would likely converge to merely a local
maximum as opposed to the intended global maximum.

One standard strategy used to identify the global maximum
involves using several sets of different initial values for the
maximization routine. We remark that this plan of action does
not solve the problem in its entirety, and a local maximum
may still be identified erroneously as the global maximum.
This strategy can be taken further: more than one different
maximization routines, with very distinct optimization tech-
niques, may be used collectively with several sets of initial
values to infer the parameters of interest. If these different
maximization routines identify similar points as the potential
global maximum, more confidence can be placed in judge-
ments that the identified points are indeed the actual global
maximum.

Another possible approach that is frequently used in the
literature is the moment-based estimation wherein parameters
are obtained by minimizing a measure of the discrepancy be-
tween empirical and theoretical second-moment properties.
These raw and uncentered moments are usually easy to com-

pute and they reveal important aspects of a distribution. For
example, the first four moments tell us something about the
information regarding the mean, variance and skewness as
well as kurtosis, respectively. Using this information, one can
immediately place constraints according to our theory on the
so-called location, scale or shape and the tail behaviour of the
distribution without specifying a full model.

The same line of thought applies to higher order moments.
One might ask whether it is possible to match a larger set
of moments, or the entire spectrum of moments (rather than
truncating at the first four moments, say) in order to get an
even closer representation of the model. If so, what would
be a suitable quantity to match? This paper seeks to address
these questions and shows that inference is possible through
matching a transform of the raw and uncentered moments.

Purpose of the present study. We formulate an alternative
estimation method using the Z−transforms for a class of non-
homogeneous point processes whose intensity is driven by
a general neural network. The Z−transform is an integral
transform in which this transformation ‘compresses’ the point
process into a single function of an argument, η, which we call
the dummy variable. This dummy variable η serves as place-
holders for the probabilities that determine the distribution of
the point process.
Z−transforms are in general an alternative specification

of stochastic processes that somehow encode the properties
of the distributions into a form that is more convenient for
certain kinds of probability calculation. We note that the
Z−transform with dummy η is also known in combinatorics
as the probability generating function.

This quantity fully characterizes the distribution of the
point process in the sense that there exists a one-to-one cor-
respondence between the point process structure and the
Z−transform. Given the form of our neural network inten-
sity driving the point process, we exploit the structure of the
Z−transform to estimate the parameters of interest. The infer-
ence strategy is to match the theoretical Z−transform with its
empirical counterpart from the observed samples.

In general, we may arrive at an over-determined situation:
that is, one in which an abundance of Z−transform conditions
are available. Similarly, there might be too few conditions
than parameters to estimate wherein there is insufficient in-
formation and the model is under-determined. Through our
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formulation, we match the entire spectrum of theZ−transform
by regulating η so that there is a surfeit of moment equations
outweighing the number of parameters as our ideal situation.

Event censoring. These Z−transforms are brought only to
illustrate one rather important application in point processes —
censoring. Censoring is a phenomenon in which the value of
an observation is only partially known. In the present context,
the times at which events happen are censored. Some notable
examples include medical trials: the subject may be observed
only periodically, rather than assessed in a continuous fashion.
The medical practitioners would report the number of heart-
burn per day rather than the exact times at which the heartburn
occurs within that day for patients.

Contributions. Our noteworthy contributions are as fol-
lows:

1. We present a method of inference via the Z−transform
for a specific class of non-homogeneous point processes whose
intensity is driven by a general neural network. The idea is
to match the theoretical Z−transform in its entirety with its
empirical counterpart from the observed samples. This is done
by regulating the number of dummy parameters η so that we
have as many equations as there are moment conditions. This
would ensure a single solution for the parameters.

2. We use this perspective to solve inference problems
motivated by events that are censored. Formally, censored data
arises when the event of interest cannot be directly observed
but is only known to have occurred during an a period of time.
In such cases, the only information we have is the number of
events over a given period, but the times at which the event
happens are not known. Through Z−transforms, we show
how to carry out inference in such situations.

3. We explicate a classical connection where the k−th mo-
ment for our model exhibit a closed-form solution in terms of
Stirling numbers and the Bell polynomial. The predictive for-
mula k = 1 and expressions for higher moments to calculate
variances, skewness and kurtosis are readily available.

4. We present experiments in a controlled setting and show
that our inference algorithm are able to indeed recover the
optimal parameters.

2 Notational Conventions and Prerequisites
Our framework requires some background on temporal point
processes. Let us cover this topic briefly.

2.1 Temporal Point Processes
Temporal point processes model the times at which events
of interest occur via a stochastic process (N(t))t≥0, where
N(t)−N(s) measures the number of events that occur in the
time interval (s, t]. We focus on such a process.

Fix some locally integrable λ : R+ → R+. We call
(N(t))t≥0 an non-homogeneous Poisson process with intensity
λ if

1. N0 = 0 almost surely

2. for any s < t, N(t)−N(s) ∼ Poisson
(∫ t

s
λ(x) dx

)
3. for any s < t ≤ s′ < t′, N(t)−N(s) ⊥⊥ N(t′)−N(s′).
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Figure 1: Average number of breaches with standard deviation

One may view non-homogeneous point processes as the fol-
lowing generative model for event times: given some terminal
time T , the number of events N is drawn from a Poisson ran-
dom variable with mean

∫ t
s
λ(x) dx, and theN event times are

then drawn i.i.d. from a distribution with probability density
function given by

λ(t)∫ t
s
λ(x) dx

. (1)

3 The Model – Neural Network Intensity
The nature of event counts in many applications is likely
to be time-varying. A cursory visual inspection of cyber
breaches [Privacy Rights Clearinghouse, 2018] over time (see
Figure 1) reveals several periodicities. We remark that there
is cyclical variability in the sense that there are some cyclical
trends or seasonal trends (i.e., some repeated patterns of cyber
breaches).

To this end, we formulate an intensity that is general
enough to encapsulate these time varying characteristics,
while presenting an inference mechanism via matching the
Z−transform to learn the appropriate activation functions. We
present a flexible family of a neural network

λ(t; θ) = τ + g

(
R∑
r=1

b(t, δ) · ar · f(cr · t+ dr)

)
(2)

where τ > 0 being the background intensity driving the point
process, g(·), f(·) are non-negative activation functions, b(t, δ)
is a decreasing function in t with δ as the parameter, and R
is a fixed number which we call the hidden units. This model
allows us to control the trend behavior in the intensity function,
as can be seen in Figure 2. The parameters to estimate are θ =
{τ, δ, (ar, cr, dr)Rr=1}. Each term f(cr ·t+dr) may be seen as
a learned hidden representation of the input time. By choosing
R to be sufficiently large, we can model complex non-linear
hidden periodicities within the rate of arrivals governing the
number of events. A standing assumption that we make is the
follows: ∫ T

0

λ(t) dt <∞. (3)

This intensity capture a wide range of other well known
intensities. Some examples include
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Figure 2: The diminishing effect of the intensity by controlling b(t, δ)

1. Polynomials.

λ(t) = τ +
R∑
r=0

ar · tr (4)

with the output activation function taking the identity
function.

2. The homogeneous Poisson process.
λ(t) = τ ∈ R++ (5)

with the output activation function g being the identity
function.

3. The p-th oscillation intensity.

λ(t) = τ +

R∑
r=1

e−δt cosp(cr · t+ dr) (6)

with the decaying function ar = 1, b(t, δ) = e−δt. Fig-
ure (2) illustrates the dampening of this intensity function
by controlling the parameter δ > 0 and the p parameter.

4. Sigmoid intensity.

λ(t) = τ +
R∑
r=1

ar(1 + e−t)−1 (7)

with the output activation function taking the identity
function.

Existing work. The idea of using neural network inten-
sities for general point processes is not new; several au-
thors [Kim et al., 2011; Du et al., 2015; Choi et al., 2016;
Mei and Eisner, 2016; Du et al., 2016; Xiao et al., 2017;
Wang et al., 2017] have recently proposed the use of recurrent
neural networks in conjunction with point processes with ran-
dom intensities. These more complex models require Bayesian
inference and likelihood methods, which prevents scalability.
Our intensity function is inspired by, and a generalization of,
the one proposed in [Menon and Lee, 2017].

3.1 The Z−Transform
Here we compute explicitly as possible the Z−transform for
our model. The Z−transform is defined to be

E[ηN(t)−N(s)] (8)

for η ∈ (0, 1). As mentioned earlier, this is also known as
the probability generating functional [Cox and Isham, 1980]
or at times known as exponential tilting. We remark that this
quantity uniquely determines the distribution of the entire
point process [Kallenberg, 2006].

Proposition 1 Let N be a point process and λ(·, θ) be its
associated intensity process. Let η ∈ (0, 1). Then

E
[
ηN(t)−N(s)

]
= exp

(∫ t

s

λ(x, θ) dx · (η − 1)

)
. (9)

provided the assumption in equation (3) holds true.

Proof. The proof follows similar lines to that of Watanabe’s
Charaterization Theorem, confer [Brémaud, 1981]. For a
fixed T < ∞, the integral in equation (1) is finite due to
standing assumption as stated in equation (3). Note however
that the original Watanabe’s Characterization Theorem deals
with expression of the form

E[exp(η · (N(t)−N(s)))] (10)

but evaluating the quantity of interest in equation (8) requires
one to only perform an exponential tilting tweak of a quantity,
so the extra details of the proof is elided.

3.2 The First k Moments

The flexibility of theoretical Z−transform is borne out in
evaluating the first k moments. As pointed out in [Pitman,
1997], one can deduce the following

E
[
(N(t)−N(s))k

]
=

k∑
z=1

{
k
z

}(∫ t

s

λ(x, θ) dx

)k
= Bk

(∫ t

s

λ(x) dx

)
(11)

where the
{
k
z

}
are known as the Stirling numbers of the

second kind that counts the number of ways to partition a set
of k elements into z sets and B is the Bell polynomial. This is
an interesting connection because, one might be interested in
finding the higher order moments of our model, after parameter
estimation of θ̂ and this can be evaluated in Python by using
the mpmath.bell() function.

The predictive formula. The predictive formula for a pe-
riod of s′, t′ would take the following form:∫ t′

s′
λ(x, θ̂) dx (12)

This predictive formula gives the expected number of events
following the learned parameters θ̂ using the procedures of
inference deferred to Section 4.
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4 Estimation Procedure
We spell out an optimization technique to learn the parameters
θ of our point process driven by a general neural network
intensity function. Recall that our intention is to match a
spectrum of theoretical moments (not just the mean, variance,
skewness or kurtosis) through the analytic Z−transform of a
neural point process as computed in Proposition 1.

It is natural to assume that the following holds: if θ0 is the
true value of the parameter θ, then the theoreticalZ−transform
moments and the empirical moments must match.

Let ∆j(t, s) be the observed number of events in sample
j during the observation period (s, t]. Then the empirical
Z−transform is given by φm(η, t, s) where

φm(η, s, t) =
1

m

m∑
j=1

η∆j(s,t). (13)

From Proposition 1, the theoretical Z−transform (repeated
here for convenience) for our neural point process model is

φ(θ; s, t) = exp

(∫ t

s

λ(x; θ) · (η − 1) dx

)
. (14)

The parameters are obtained by minimizing the relative en-
tropy between the Z−transform and its empirical counterpart,
i.e.

DKL(p(η) ‖ q(η)) =
∑
η

p(η) log
p(η)

q(η)
(15)

where p denotes the normalized empirical probability and q
the normalized theoretical probability of the Z−transform.
We need the normalization since we have to convert the values
of Z−transforms and its empirical counterpart to probability
distributions.

Sigmoid intensity λσ(·, θ). We illustrate this with a con-
crete example. Suppose we fix our neural point process model
as having a sigmoidal flavored intensity, i.e.

λσ(t, {τ, c, d}) := τ +
1

e(c·t+d)
. (16)

The function has the property that the initial stage of inten-
sity growth is approximately exponential; then, as saturation
begins, the value slows, and at maturity, it terminates. Ob-
served that there are three parameters to be estimated, namely
{τ, c, d}. The theoretical Z−transform associated with the
sigmoid intensity λσ(·) is calculated to be

φσ(η, s, t) = exp

(
τ(t− s)− 1

c · ec(t−s)+d
· (η − 1)

)
.

(17)
Note in this particular example, there are three unknowns.

The normalized distributions of q and p are calculated as fol-
lows:

q :
φσ(ηn, s, t)∑N
n=1 φσ(ηn, s, t)

, n = 1, 2, 3, . . . ,N , (18)

p :
φm(ηn, s, t)∑N
n=1 φm(ηn, s, t)

, n = 1, 2, 3, . . . ,N . (19)

Algorithm 1 Inference of parameters via Z−transforms
Input: Fix time points (s, t), m observed number of events
for fixed times and ∆j(s, t) for j = 1, 2, . . .m. Define the
intensity specification λ(t).

1: Given the observed number of events from s to t, ∆j(s, t),
of m number of paths, compute the empirical moments:

φm(η, s, t) =
1

m

m∑
j=1

η∆j(s,t)

2: (a) For the intensity specification that leads to a closed
form of Z−transforms, compute this quantity via:

φ(θ; s, t) = exp

(∫ t

s

λ(x; θ) · (η − 1) dx

)
(b) For the intensity specification that does not inherit

a closed form Z−transform, compute the theoreti-
cal moments approximately with an aid of a using
symbolic programming and numerical integration.

3: Compute the normalized distributions q and p via expres-
sions in equations (18) and (19) respectively.

4: Minimize the relative entropy or mean squared error be-
tween the theoretical and empirical Z−transforms as in
equation (15) or equation (21) using standard optimiza-
tion packages whilst enforcing strict constraints such that
τ > 0, δ > 0 and g(·), f(·) being non-negative activation
functions.

Hence, the estimated parameters associated with λσ is then
constructed by minimizing the relative entropy between the
theorerical Z−moment and its empirical version calculated
from the observed samples, i.e.

argmin
τ,c,d

DKL(p(η) ‖ q(η)). (20)

Another way to estimate λσ is to minimize the mean squared
loss between the theoretical Z−transform and the empirical
version as follows:

argmin
τ,c,d

N∑
n=1

(φσ(ηn, s, t)− φm(ηn, s, t))
2
. (21)

Note that this is the standard loss used in the GMM framework
[Hall, 2005].

Overdetermined and underdetermined systems. Let the
dimension of θ be p and r be the number of conditions. In
general there might be more moments conditions than param-
eters to estimate r > p, i.e., the model is overidentified. If
r < q, then there is insufficient information and the model is
underidentified.

The role of η in the Z−transform. Rather than matching
the first k moments viz. mean, variance, skewness and kurtosis,
say, we match the entire structure of the Z−transform by
regulating the number of different values for η until there
is a surfeit of moment conditions compared to number of
unknowns.
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5,000 samples 10,000 samples 50,000 samples

# of η τ (KL) a (KL) τ (SE) a (SE) τ (KL) a (KL) τ (SE) a (SE) τ (KL) a (KL) τ (SE) a (SE)

2 0.4586 0.8471 0.4647 0.8593 0.4253 0.8798 0.4268 0.8829 0.4510 0.8807 0.4499 0.8785
5 0.4341 0.8597 0.4401 0.8716 0.4558 0.8649 0.4572 0.8677 0.4582 0.8775 0.4569 0.8749
10 0.4400 0.8569 0.4459 0.8687 0.4354 0.8753 0.4367 0.8779 0.5092 0.8522 0.5078 0.8494
20 0.4694 0.8422 0.4753 0.8540 0.4865 0.8497 0.4878 0.8523 0.4460 0.8837 0.4446 0.8810
50 0.4431 0.8554 0.4490 0.8671 0.4669 0.8595 0.4682 0.8621 0.5005 0.8565 0.4991 0.8538
100 0.4325 0.8607 0.4384 0.8724 0.4370 0.8745 0.4382 0.8771 0.4581 0.8776 0.4568 0.8750
500 0.4395 0.8572 0.4454 0.8689 0.4899 0.8480 0.4912 0.8505 0.4977 0.8579 0.4964 0.8552

τ (MLE): 0.4501
a (MLE): 0.8725

τ (MLE): 0.4612
a (MLE): 0.8736

τ (MLE): 0.4676
a (MLE): 0.8631

Table 1: Calibrated parameters: linear intensity function

5,000 samples 10,000 samples 50,000 samples

# of η τ (KL) δ (KL) τ (SE) δ (SE) τ (KL) δ (KL) τ (SE) δ (SE) τ (KL) δ (KL) τ (SE) δ (SE)

2 2.7696 0.1262 2.8232 0.1249 2.9936 0.1357 2.9854 0.1361 3.0892 0.6859 3.0953 0.6857
5 2.7768 0.3949 2.8316 0.3938 3.0118 0.9035 3.0036 0.9036 3.0889 0.5631 3.0927 0.5632
10 2.7874 0.7920 2.8416 0.7905 3.0045 0.6271 2.9972 0.6274 3.0952 0.8812 3.1007 0.8811
20 2.6493 0.0294 2.8221 0.0332 2.8522 0.1856 2.9868 0.1831 2.9515 0.3221 3.0875 0.3184
50 2.4493 0.7687 2.8413 0.7595 2.6540 0.0037 2.9822 0.0045 2.7229 0.7858 3.0985 0.7765
100 2.4175 0.3755 2.8318 0.3651 2.6445 0.6529 2.9978 0.6442 2.6945 0.2189 3.0849 0.2094
500 2.4802 0.2867 2.8298 0.2783 2.6178 0.4932 2.9940 0.4841 2.6738 0.8038 3.0989 0.7939

τ (MLE): 3.1160
δ (MLE): 0.6474

τ (MLE): 2.9115
δ (MLE): 0.4596

τ (MLE): 3.0779
δ (MLE): 0.4429

Table 2: Calibrated parameters: oscillation intensity function

Connections to literature. In most of the point process
literature, the moment matching is carried out by match-
ing the first few moments as well as the tilted moments in-
cluding the autocorrelation functions, [Zhang et al., 2012;
Yu, 2004; Gerhardt and Nelson, 2009; Heath et al., 2013;
Diggle et al., 2013; Aı̈t-Sahalia et al., 2015; Da Fonseca and
Zaatour, 2014]. Similar techniques were extended to infer-
ring non-parametric forms of point processes that relies on
second-order and third-order integrated cumulants [Achab et
al., 2017].

Depending on the form of the objective and the iterative
specificities, these methods can be seen as falling into the
framework of the generic method of Generalized Method of
Moments for estimating parameters in probabilistic models
[Hall, 2005] and are used in other applications of machine
learning [Anandkumar et al., 2012; Soufiani et al., 2013].

5 Experiments
5.1 Parameter Recovery on Fictitious Data
Our inference algorithm is tested on synthetic data generated
from our model. We validate our theoretical analyses by il-
lustrating the feasibility of using the Z−transform matching
technique for our neural point process model.

Preliminary setup. For fixed time points (s, t), we use the
modified thinning method, confer [Ogata, 1981]; to generate
m paths from a neural point process with known parameters θ∗.
For each of this sample j, where j = 1, 2, . . . ,m, we record
the total number of events and we compute the parameter
estimate θ̂ via minimizing the procedures set forth in Section 4.

Intensity functions. We repeat this for 5,000 independent
samples from the point process for two distinct intensity func-

tions, i.e., 1. linear intensity which takes the form

λ(t, θ) = τ + a · t, (22)

and 2. the oscillating intensity, whose intensity diminishes as
time goes by taking the following form:

λ(t) = τ + e−δt(cos(2π · t)). (23)

Note that this is a special case of that given in equation (6).
We set the parameters θ∗ for the linear intensity as θ∗1 =

(τ, a) = (0.5, 0.85) and the oscillating intensity as θ∗2 =
(τ, δ) = (3.0, 0.15).

Results. Tables 1 and 2 confirm that the Z−transform
method have commensurate accuracy to the ground truth θ∗1
and θ∗2 . This reassures that when the Z−transform method is
used, these inference procedures operate sensibly, and indeed
recover the optimal parameters asymptotically.

With regards to the linear intensity (see Table 1), this inten-
sity may seem trivial but this is an example where both the
MLE as well as the our Z−transform method have correspond-
ing accuracy to the ground truth θ∗. However for the oscilla-
tion intensity (see Table 2), we see that the MLE method turns
out to be problematic, possibly owing to the non-convexity
and periodic nature of intensity function. We report that the
calibrated parameters by matching the first two moments for
linear and oscillation intensities are (τ, a) = (0.4000, 0.8997)
and (τ, δ) = (0.0458, 0.6996), respectively. Also in addi-
tion, note that the oscillation intensity function has the form
constant+exp(−δt) ·cos(2π t) where the intensity decays off
as time t ↗ ∞. In this particular situation, the effect of the
constant dominates the generation of the events. This could
be the reason the process of recovering the ground truth for δ
is a little challenging, as evident from Table 2.
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Figure 3: Comparison of our model and some baseline models at varying time granularities

Method Running time (s)

Our model 0.025± 0.002
AR(1) 0.342± 0.003
GARCH(1,1) 0.045± 0.004
GPR 3.258± 0.025

Table 3: Comparison of compute time (in seconds).

As a caveat on the applicability of the our method, we
remark that the expression of exponential in equation (9) may
at times cause numerical issues since for very large numbers of
events, the resulting value for the transform is unrepresentably
tiny.

5.2 Event Counts Predictions on Real Data
We compare the various methods on two real-world datasets:
breaches data, henchforth known as Breaches, comprising
times of security violation in a period of 2005 to 2018 [Privacy
Rights Clearinghouse, 2018]; and Calgary, comprising of
access log to the University of Calgary from October 1994 to
October 1995 [The Internet Traffic Archive, 2018]. Previous
studies have utilized standard time series models to fit and
predict potential cyber attacks [Kumar et al., 2006]. For each
dataset, we aim to predict the number of events happening in
some specified future time window.

Preliminary setup. For each of these datasets, we split the
recorded number of events into a train and test set.We then
carry out predictions of event counts over periods with dif-
ferent granularities. The precise split methodology varies for
each dataset are as follows: For the Breaches dataset, we select
the first 3,926 data points as training set to train the models
and predict the next 1 to 4 data points (in days). For Calgary,
the first 5,000 data points are selected as training set and we
predict for the next 20 minutes. The prediction is done via
these intervals using the Bell function formula explicated in
Section 3.2.

Results. Figure 3 confirms that on real-world data, the per-
formance of our model seemed competitive compared to
standard baseline models: AR(1), GARCH(1, 1), as well

as the Gaussian Process Regression (GPR). In Table 3, we
show the training times of our method compared to AR(1),
GARCH(1, 1), and GPR. The results seemed to indicate that
there are benefits over existing models in performing short
term predictions. The arguments as to why these might be
the case can be found in the recent work of [Menon and Lee,
2017]. Our method is the fastest, while GPR is the slowest. All
other methods including our method work well on big datasets;
the GPR method seems unable to fit a training set with more
than 6,000 points, as it faces a memory usage issue (using the
scikit-learn implementation in a Core i7 machine with 8GB
RAM); future work may compare against recent sparse Gaus-
sian Process models or online approaches for time-series (e.g.,
[Soh and Demiris, 2015]).

6 Conclusion

We proposed a method of drawing inferences via the
Z−transform for a point process whose arrival rate takes a neu-
ral network. The idea is to match the theoreticalZ−transforms
with its empirical counterpart of the observed samples. We
further used this perspective to investigate the inference mech-
anism in situations wherein events are censored, i.e., the only
information we have is the number of events over a given
period, but the times at which the event happens are not
known. In future work, exploring similar ideas for larger
class of point processes whose governing intensity functions
are in fact random (confer e.g. [Linderman and Adams, 2014;
Flaxman et al., 2017; Ding et al., 2017]) would be of interest.
Another area we expect to make progress in is the study that
concerns properties of Z−transform estimators.
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