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Motivation for Stochastic Hawkes

Background

Simple point processes:
(Ti )i a sequence of non-negative random variables such that Ti < Ti+1. Also
known as random times.

Counting processes:
Given simple point process (Ti )i

N(t) =
∑
i>0

1Ti≤t

is called the counting process associated with T .

Interarrival times:
The process ∆ defined by

∆i = Ti − Ti−1

is called the interarrival times associated with T .

Intensity process: The intensity process is defined as

λ(t) = lim
h→0

1

h
E [N(t + h)− N(t)|Ft ]
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Motivation for Stochastic Hawkes

Recap: Poisson → Hawkes → Stochastic Hawkes

Nt as the number of arrivals or events of the process by time t.

λ = const.(Poisson), does not take the history of events into account.
However, if an arrival causes the intensity function to increase then the
process is said to be self-exciting (Hawkes Process).

Hawkes flavour:

λ(t) = λ̂0(t) +
∑
i :t>Ti

Y (Ti ) ν(t − Ti ), (1)

where the function ν takes the form ν(z) = e−δz .

∃ different formulations for Y

1 Constant, Hawkes (1971), Hawkes & Oakes (1974)

2 Random excitations, Brémaud & Massoulié (2002), Dassios & Zhao (2013),

3 Stochastic differential equations.
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Motivation for Stochastic Hawkes

Illustration of Stochastic Hawkes

λ(t)

Note the variation of heights with Cov(Y5, Y6) 6= 0

Z10 = 1

Z20 = 1

Z32 = 1

T1 T2 T3 T4 T5 T6T7

Y5

Y6

Figure: A sample path of the intensity function λ(·).
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Motivation for Stochastic Hawkes

Our model

The intensity function

λ(t) = λ̂0(t)︸ ︷︷ ︸
Base intensity

+
∑
i :t>Ti

Y (Ti )︸ ︷︷ ︸
Contagion process/Levels of excitation

ν(t − Ti )

where λ̂0 : R 7→ R+ is a deterministic base intensity, Y is a stochastic process
and ν : R+ 7→ R+ conveys the positive influence of the past events Ti on the
current value of the intensity process.

Base intensity λ̂0

Contagion process / Levels of excitation (Yi )i=1,2,..,NT
measure the impact of

clustering of the event times

We take ν to be the exponential kernel of the form ν(t) = e−δt .
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Motivation for Stochastic Hawkes

Stochastic differential equations to describe evolution of Y

Changes in the levels of excitation Y is assumed to satisfy

Y· =

∫ ·
0

µ̂(t,Yt)dt +

∫ ·
0

σ̂(t,Yt)dBt

where B is a standard Brownian motion and t ∈ [0,T ] where T <∞.

Standing assumption:
Yt > 0, ∀t ≥ 0.

Geometric Brownian Motion (GBM):

Exponential Langevin:
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Motivation for Stochastic Hawkes

Two representations for Stochastic Hawkes

Intensity based.

λt = a + (λ0 − a)e−δt +
Nt∑

i :Ti<t

Yi e
−δ(t−Ti ) (2)

Cluster based. Immigrants and offsprings. We say an event time Ti is an
1 immigrant if it is generated from the base intensity a + (λ0 − a)e−δt ,

otherwise

2 we say Ti is an offspring.

It is natural to introduce a variable that describes the specific process to which
each event time Ti corresponds to.

Zi0 = 1 if event i is an immigrant,

Zij = 1 if event i is an offspring of j
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Motivation for Stochastic Hawkes

Quick recap - Stochastic Hawkes

λ(t)

Note the variation of heights with Cov(Y5, Y6) 6= 0
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Figure: A sample path of the intensity function λ(·).
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Simulation and Inference

Simulation & Inference

Simulation framework of Dassios & Zhao (2011) is adopted,
Decompose the inter-arrival event times into two independent simpler random
variables: S (1),S (2); Sj+1 is the inter-arrival time for the (j + 1)-th jump:

Sj+1 = Tj+1 − Tj .

Given the intensity function, we can derive the cumulative density function
for Sj+1 as

FSj+1(s) = 1− exp

(
−
(
λT+

j
− a
) 1− e−δs

δ
− as

)
.

Decompose Sj+1 into S
(1)
j+1 and S

(2)
j+1:

P(Sj+1 > s) = exp
(
−
(
λT+

j
− a
) 1− e−δs

δ

)
× e−as

= P
(
S
(1)
j+1 > s

)
× P

(
S
(2)
j+1 > s

)
= P

(
min

(
S
(1)
j+1,S

(2)
j+1

)
> s
)
.
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Simulation and Inference

Simulation & Inference

F
S
(1)
j+1

(s) = P
(
S
(1)
j+1 ≤ s

)
= 1− exp

(
−
(
λT+

j
− a
) 1− e−δs

δ

)
,

F
S
(2)
j+1

(s) = P
(
S
(2)
j+1 ≤ s

)
= 1− e−as .

for 0 ≤ s <∞. To simulate Sj+1, we simply need to independently simulate both

S
(1)
j+1 and S

(2)
j+1. Simulating S

(2)
j+1 is trivial since S

(2)
j+1 follows an exponential

distribution with rate parameter a. To simulate S
(1)
j+1, we use the inverse CDF

approach:

S∗j+1 = −1

δ
ln

(
1 +

δ ln(v)

λT+
j
− a

)
if exp

(
−
λT+

j
− a

δ

)
≤ v < 1,

we discard S∗j+1 otherwise, that is, v < exp
(
−

λ
T+
j
−a

δ

)
(this corresponds to the

defective part), where v is simulated from a standard uniform distribution
V ∼ U(0, 1).
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Simulation and Inference

Simulation & Inference

Inference - Hybrid of MH and Gibbs

The employment of branching representation enables the use of Gibbs
sampling to learn Z ,µ and σ,

Other parameters a, λ0, k and Y are learned with the vanilla MH algorithm.
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Experimental Result
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Experimental Result

Synthetic validation

Inference algorithm is first tested on synthetic data generated from
Stochastic Hawkes

Event times are generated assuming Y follows iid Gamma, GBM or
Exponential Langevin,

Performing experiments to recalibrate the parameters and subsequently
sample the posterior Y gives the following interesting results
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Experimental Result

Inference learns Gamma ground truth

Ground truth Y Gamma
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All seems good.
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Experimental Result

Inference learns G.B.M.

Ground truth Y Gamma
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iid Gamma fails, but a posteriori trying to capture a downward trend.
GBM learns well. Exp Langevin too!!
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Experimental Result

Japanese Earthquakes Data (Di Giacomo et. al 2015)

Plot of Y vs time:
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Y might not be iid as earthquake occurrence tend to be correlated.

Geophysical TS are frequently autocorrelated because of inertia or carryover
processes in physical system.

Autocorrelations should be near-zero for randomness, else will be significantly
non-zero
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Experimental Result

Autocorrelation functions - SDEs retrieve correlated Y

Ground truth Y Gamma
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GBM Exp Langevin
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Experimental Result

Prediction - Stochastic Hawkes performs reasonable well

Table: Prediction of number of Earthquakes on Test Set. Result is averaged over 5 runs.

Model Predicted Observed Diff

Poisson Process 62.80 ± 0.00 73.00 -10.20 ± 0.00
Classical Hawkes 61.13 ± 2.80 73.00 -11.87 ± 2.80

Stochastic Hawkes (GBM) 64.38 ± 6.82 73.00 -8.62 ± 6.82
Stochastic Hawkes (Langevin) 63.54 ± 4.09 73.00 -9.46 ± 4.09
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Summary

Summary

Motivation for Stochastic Hawkes

λt = a + (λ0 − a)e−δt +
Nt∑

i :Ti<t

Yi e
−δ(t−Ti )

1 Constant
2 Independent and identically distributed
3 Stochastic differential equations

Simulation and Inference - with Z

Experiments - Synthetic / Earthquake

Poster #32, 3pm - 7pm later today
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