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Background

Simple point processes:

o (T;)i a sequence of non-negative random variables such that T; < T4

known as random times.

Counting processes:
o Given simple point process (T;);
N(t) =) lrs<
i>0
is called the counting process associated with T.
@ Interarrival times:
o The process A defined by
Ai=T,—Ti1
is called the interarrival times associated with T.

Intensity process: The intensity process is defined as
1
A(t) = lim —E[N(t + h) — N(t)|F]
h—0 h
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Motivation for Stochastic Hawkes

Recap: Poisson — Hawkes — Stochastic Hawkes

N; as the number of arrivals or events of the process by time t.

A\ = const.(Poisson), does not take the history of events into account.
However, if an arrival causes the intensity function to increase then the
process is said to be self-exciting (Hawkes Process).

Hawkes flavour:

At)=Xo(t)+ Y Y(T)w(t—T)), (1)

Pit>T;

where the function v takes the form v(z) = e~%Z.

o 1 different formulations for Y
@ Constant, Hawkes (1971), Hawkes & Oakes (1974)
@ Random excitations, Brémaud & Massoulié (2002), Dassios & Zhao (2013),

@ Stochastic differential equations.
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Motivation for Stochastic Hawkes

Illustration of Stochastic Hawkes

At)

Z3p =1 Note the variation of heights with Cov(Ys, Yg) # 0

T1 T, T3 Ty Ts Te T7
SR M T Y



Motivation for Stochastic Hawkes

Our model

@ The intensity function

At) = + Z Y(T)) v(t—T;)

Contaglon process / Levels of excitation

{ .

Base intensity

where \g : R R, is a deterministic base intensity, Y is a stochastic process
and v : Ry — Ry conveys the positive influence of the past events T; on the
current value of the intensity process.

o Base intensity No

o Contagion process / Levels of excitation (Y;)i=1,2,. n, measure the impact of
clustering of the event times

o We take v to be the of the form
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Motivation for Stochastic Hawkes

Stochastic differential equations to describe evolution of Y

@ Changes in the levels of excitation Y is assumed to satisfy
Y. = / At Yt)dt+/ &(t, Yy)dB;
0 0
where B is a standard Brownian motion and t € [0, T] where T < 0.

e Standing assumption:
Y: >0, Vvt>O0.

e Geometric Brownian Motion (GBM):

e Exponential Langevin:
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Motivation for Stochastic Hawkes

Two representations for Stochastic Hawkes

@ Intensity based.

N;
Ae=a+(ho—a)e 4+ Y Vet (2)
i Ti<t

o Cluster based. Immigrants and offsprings. We say an event time T; is an
@ immigrant if it is generated from the base intensity a + (Ao — a)e™%,
otherwise

@ we say T; is an offspring.

It is natural to introduce a variable that describes the specific process to which
each event time T; corresponds to.

e Zip=1 if event /is an immigrant,

e Z;=1 if event i is an offspring of j
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Motivation for Stochastic Hawkes

Quick recap - Stochastic Hawkes

At)

Z3p =1 Note the variation of heights with Cov(Ys, Yg) # 0
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Simulation and Inference
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Simulation and Inference

Simulation & Inference

e Simulation framework of Dassios & Zhao (2011) is adopted,
@ Decompose the inter-arrival event times into two independent simpler random
variables: S S(); S, 1 is the inter-arrival time for the (j + 1)-th jump:

Siv1=Tjy1 — Tj.

Given the intensity function, we can derive the cumulative density function
for S5j41 as

1_e—6s
Fs..(s)=1—exp| — ()‘Tf _ a) —— s

Decompose Sy into 5( ) and 51(4231

P(Sj11 > s) = exp ( - ()\.r_+ —a) 1%675) « e=3s
—P(s5) > s) xP(5 > )
_ P(min(Sj(i)l, s?) > s)_
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Simulation and Inference

Simulation & Inference

(s 29) 1oy -0 ),
(S) ( < 5) —=1—e 2,

for0<s < oo To simulate SJH, we simply need to independently simulate both
5+1 and 5 1- Simulating 5 1 is trivial since 5 foIIows an exponential

distribution W|th rate parameter a. To simulate 5(+)1, we use the inverse CDF
approach:

. 1 5In(v) _ Arr—a
J+1:_6|n(1+)\.’_+—a> |feXp<—5 SV<1,
)\Tgrfa
we discard 5j"+1 otherwise, that is, v < exp | — - ) (this corresponds to the

defective part), where v is simulated from a standard uniform distribution
V ~ U(0,1).
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Simulation and Inference

Simulation & Inference
Inference - Hybrid of MH and Gibbs
@ The employment of branching representation enables the use of Gibbs

sampling to learn Z,u and o,

o Other parameters a, \g, k and Y are learned with the vanilla MH algorithm.

Lee, Lim and Ong Stochastic Hawkes June 21, 2016 13 /22



Experimental Result
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Experimental Result

Synthetic validation

@ Inference algorithm is first tested on synthetic data generated from
Stochastic Hawkes

e Event times are generated assuming Y follows iid Gamma, GBM or
Exponential Langevin,

@ Performing experiments to recalibrate the parameters and subsequently
sample the posterior Y gives the following interesting results
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Experimental Result

Inference learns Gamma ground truth

Ground truth Y Gamma

) ‘\D Mi L' H'H‘ Jw Mr A ’H

Exp Langevin

o All seems good.
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Experimental Result

Inference learns G.B.M.

Ground truth Y Gamma
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o iid Gamma fails, but a posteriori trying to capture a downward trend.
e GBM learns well. Exp Langevin too!!
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Japanese Earthquakes Data (Di Giacomo et. al 2015)

@ Plot of Y vs time:

Japanese Earthquakes Sample Autocorrelation Function
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@ Y might not be iid as earthquake occurrence tend to be correlated.

@ Geophysical TS are frequently autocorrelated because of inertia or carryover
processes in physical system.

@ Autocorrelations should be near-zero for randomness, else will be significantly
non-zero
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Experimental Result

Autocorrelation functions - SDEs retrieve correlated Y
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Experimental Result

Prediction - Stochastic Hawkes performs reasonable well

TABLE: Prediction of number of Earthquakes on Test Set. Result is averaged over 5 runs.

MODEL PREDICTED OBSERVED DIFF
PoissoN PrROCESs 62.80 4+ 0.00 73.00 -10.20 £ 0.00
CLASSICAL HAWKES 61.13 £+ 2.80 73.00 -11.87 £ 2.80
SToCHASTIC HAWKES (GBM)  64.38 £ 6.82 73.00 -8.62 + 6.82
STOCHASTIC HAWKES (LANGEVIN)  63.54 + 4.09 73.00 -9.46 + 4.09

Lee, Lim and Ong

Stochastic Hawkes

June 21, 2016 20/ 22



Summary

Outline

© SUMMARY

Lee, Lim and Ong Stochastic Hawkes June 21, 2016 21 /22



Summary

Summary

@ Motivation for Stochastic Hawkes

Ni
AM=a+(No—a)e + Z Y; e (=T
i Ti<t

@ Constant
@ Independent and identically distributed
@ Stochastic differential equations

e Simulation and Inference - with Z
e Experiments - Synthetic / Earthquake

o Poster #32, 3pm - 7pm later today
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